• Title/Summary/Keyword: Thermal energy storage system

Search Result 431, Processing Time 0.029 seconds

Development of Heating Technology for Greenhouse by Use of Ground Filtration Water Source Heat Pump (여과수열원 히트펌프를 이용한 온실난방기술 개발)

  • Moon, J.P.;Lee, S.H.;Kang, Y.K.;Lee, S.J.;Kim, K.W.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.172.2-172.2
    • /
    • 2010
  • This study was carried out in order to reduce the installation expense of heating system for greenhouse comparing to geothermal heat pump and develope the coefficient of performance (COP) for a heat pump. For getting plenty of heat flux from geothermal energy. Surface water in river channel was used for getting a lots of geothermal heat by penetrating water through underground soil layer of the river bank that make heat transmission to passing water. The range of water temperature after the process of Ground filtration is 13~18 degrees celsius which is very similar to low heat source of geothermal heat pump system and the plenty amount of heat source from that make the number of geothermal heat exchanging hole and the expense for geothermal heat exchanger construction reduced. Drainage well is also used for returning filtration water to the aquifer that keep the water good recirculation from losing geothermal heat and water resource. For the COP improvement of Heat pump, thermal storage tank with separating insulation plate according to the temperature difference make the COP of Heat pump that is similar to thermal storage tank with diffuser. Developed thermal storage tank make construction expense cheaper than customarily used one's. and that sand filter and oxidation sand (FELOX) are going to be used for improving ground filtration water quality that make heat exchanger efficiency better. All above developed component skill are going to be set on the Ground filtration water source heat pump system and applied for medium, large scale for protected greenhouse in riverside area and on-site experiment is going to do for optimizing the heating system function and overcome the problem happening in the process of on-site application afterward.

  • PDF

Life cycle cost analysis and smart operation mode of ground source heat pump system

  • Yoon, Seok;Lee, Seung-Rae
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.743-758
    • /
    • 2015
  • This paper presents an advanced life cycle cost (LCC) analysis of a ground source heat pump (GSHP) system and suggests a smart operation mode with a thermal performance test (TPT) and an energy pile system constructed on the site of the Incheon International Airport (IIA). First, an economic analysis of the GSHP system was conducted for the second passenger terminal of the IIA considering actual influencing factors such as government support and the residual value of the equipment. The analysis results showed that the economic efficiency of the GSHP system could be increased owing to several influential factors. Second, a multiple regression analysis was conducted using different independent variables in order to analyze the influence indices with regard to the LCC results. Every independent index, in this case the initial construction cost, lifespan of the equipment, discount rate and the amount of price inflation can affect the LCC results. Third, a GSHP system using an energy pile was installed on the site of the construction laboratory institute of the IIA. TPTs of W-shape and spiral-coil-type GHEs were conducted in continuous and intermittent operation modes, respectively, prior to system operation of the energy pile. A cooling GSHP system in the energy pile was operated in both the continuous and intermittent modes, and the LCC was calculated. Furthermore, the smart operation mode and LCC were analyzed considering the application of a thermal storage tank.

Study on the Dynamic Synchronizing Control of An Islanded Microgrid (독립운전 마이크로그리드의 능동형 동기 투입 제어에 관한 연구)

  • Cho, Chang-Hee;Jeon, Jin-Hong;Kim, Jong-Yul;Kwon, Soon-Man;Kim, Sung-Shin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1112-1121
    • /
    • 2011
  • A microgrid is an aggregation of multiple distributed generators (DGs) such as renewable energy sources, conventional generators, and energy storage systems that provide both electric power and thermal energy. Generally, a microgrid operates in parallel with the main grid. However, there are cases in which a microgrid operates in islanded mode, or in a disconnected state. Islanded microgrid can change its operational mode to grid-connected operation by reconnection to the grid, which is referred to as synchronization. Generally, a single machine simply synchronizes with the grid using a synchronizer. However, the synchronization of microgrid that operate with multiple DGs and loads cannot be controlled by a traditional synchronizer, but needs to control multiple generators and energy storage systems in a coordinated way. This is not a simple job, considering that a microgrid consists of various power electronics-based DGs as well as alternator-based generators that produce power together. This paper introduces the results of research examining an active synchronizing control system that consists of the network-based coordinated control of multiple DGs. Consequently, it provides the microgrid with a deterministic and reliable reconnection to the grid. The proposed method is verified by using the test cases with the experimental setup of a microgrid pilot plant.

Development of Energy Storage System Combined with Solar System and Superconducting Magnet (초전도 마그넷을 이용한 태양광에너지 저장장치 개발)

  • Kim, Dae-Wook;Chung, Yoon-Do;Yoon, Yong-Soo;Kim, Tae-Jung;Kim, Hyun-Ki;Ko, Kae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.888-889
    • /
    • 2011
  • As new one of superconducting power supplies, we proposed an HTS flux pump utilized a solar energy system. As an eternal electric energy can be converted by the solar system, the solar energy system is promisingly applied as an energy source in the power applications. A solar energy system is comprised of solar panel, photo-voltaic (PV) controller, converter and battery. The HTS flux pump consists of an electromagnet, two thermal heaters and a Bi-2223 magnet. In this paper, we describe the possibility the fusion technology between superconducting power supply and solar energy system. As a fundamental step, the fabrication, structure and experimental results are explained.

  • PDF

Study on the Thermal Storage Characteristics of a Multi-capsule type LTES System -Analysis for Heat Charging and Discharging Process for Water Flow- (다관형 잠열축열장치의 축열특성연구 -물을 매체로 한 축열 및 방열과정 분석-)

  • Kim, Y.B.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.1
    • /
    • pp.62-69
    • /
    • 1994
  • This study was designed to seek information on the heat charging and discharging characteristics of a multi-capsule type LTES(Latent Heat of Fusion Thermal Energy Storage) system, and especially prediction equation of outlet water temperature from the system. During heat charging process, the water temperature in the LTES tank increased very slowly in comparison with a predicted one and was kept near the melting point of the PCM for about 25 minutes. During heat discharging process, the latent heat discharging period of the outlet water temperature became longer as the inlet water temperature became higher and/or mass flow rate became lower. The dimensionless temperature of the outlet water was predicted by linking three equations of ${\theta}=1.1Exp(-{\tau}/0.82)$, ${\theta}=-0.06{\tau}+0.3$, ${\theta}=0.8Exp(-{\tau}/1.4)$ ($r^2{\leq}0.88$) depending on discharging period regardless of mass flow rates on the case of the inlet water temperature at $21.5^{\circ}C$.

  • PDF

The Study on the Performance of the Fuel Cell Driven Compound Source Hybrid Heat Pump Heating and Cooling System to Large Community Building (대형 Community 건물의 연료전지 구동 복합열원 하이브리드 히트펌프 냉.난방 시스템 성능 해석)

  • Byun, Jae-Ki;Jeong, Dong-Hwa;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.82-87
    • /
    • 2007
  • In the present study, the simulation on the annual performance evaluation of a renewable energy systems with fuel cell driven compound source hybrid heat pump systems is applied to the heating and cooling of large community building. The large community building has the economical advantage to apply heat pump cooling and heating systems the long period operation. If air and ground source hybrid heat pump systems are combined, COP of the system can be increased largely. Fuel cell driven compound source hybrid heat pump system can reduced the fuel cost as well as thermal storage tank sharply.

  • PDF

Theoretical analysis on the cool storage system using clathrates (포접화합물을 이용한 축냉시스템에 대한 이론적 해석)

  • Chung, J.D.;Jung, I.S.;Yoo, H.;Lee, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.343-353
    • /
    • 1997
  • This paper presents a theoretical model for predicting transient behaviors during storage process of the cool storage system using the R141b clathrate. Introduction of the lumped capacitance method along with a brine reservoir having large thermal capacity yields a set of simplified energy equations. Based on the Arrhenius equation and the known experimental findings, the formation rate of clathrate for which the degree of subcooling is properly accounted is newly developed. An effective nondimensionalization of the model equations facilitates the closure of modeling as well as parametric study. Calculated results for a specific case not only simulate a typical pattern of temperautre variation in the tank successfully, but also agree reasonably well with available data. The effect of each characteristic parameter on the system performance is also investigated. It is revealed that the dominant among relevant parameters are the activation energy of reaction, the degree of subcoling and the initial mass fraction of refrigerant. Finally, the uncertainty associated with modeling of the shaft work variation appears to need further studies.

  • PDF

The Evaluation of Fire Reliability for the High Pressure Hydrogen Storage System of Fuel Cell Vehicle (I) (연료전지자동차의 고압수소저장시스템 국부화재 신뢰성 평가 (I))

  • Kim, Sang-Hyun;Choi, Young-Min;Hang, Ki-Ho;Shim, Ji-Hyun;Hang, In-Cheol;Lim, Tae-Won
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.520-526
    • /
    • 2011
  • In recent years, it is very important that hydrogen storage system is safe for user in any circumstances in case of crash and fire. Because the hydrogen vehicle usually carry high pressurized cylinders, it is necessary to do safety design for fire. The Global Technical Regulation (GTR) has been enacted for localized and engulfing fire test. High pressure hydrogen storage system of fuel cell electrical vehicles are equipped with Thermal Pressure Relief Device (TPRD) installed in pressured tank cylinder to prevent the explosion of the tank during a fire. TPRDs are safety devices that perceive a fire and release gas in the pressure tank cylinder before it is exploded. In this paper, we observed the localized and engulfing behavior of tank safety, regarding the difference of size and types of the tanks in accordance with GTR.