• 제목/요약/키워드: Thermal damages

검색결과 131건 처리시간 0.025초

복사열에 노출된 소방용 폼 약제의 열적 특성 연구 (Thermal Characteristics of Fire-Protection Foams Exposed to Radiant Heating)

  • 김홍식;황인주;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1570-1575
    • /
    • 2004
  • In order to evaluate the performance of fire-fighting agents used to protect structures from heat and fire damages, the thermal characteristics of fire-protection foams are experimentally investigated. The current research focuses on the destruction of a fire-fighting foam subjected to heat radiation. A simple repeatable test for fire-protection foams subjected to fire radiation is developed. This test involves foam generation equipment, a fire source for heat generation, repeatable test procedures, and data acquisition techniques. Results of the experimental procedure indicated that each thermocouple within the foam responded in a similar manner and gradually to a temperature of $15^{\circ}C{\sim}20^{\circ}C$. At this point, each trace generally rises to a temperature of approximately $90^{\circ}C$. The temperature gradient in the foam as time passes increases with increased foam expansion ratio. In addition, it is determined that the temperature gradient along the foam for depth decreases with increased foam expansion ratio.

  • PDF

철도차량 차륜의 잔류응력 평가 (Evaluation of Residual Stress of railway wheel)

  • 서정원;구병춘;이동형;정흥채
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.208-213
    • /
    • 2002
  • Railway wheel and axle are the most critical components in railway system. A wheel and axle failure can cause a derailment with its attendant loss of life and property. The service conditions of railway vehicles have become severe in recent years due to a general increase in operating speeds. Therefore, more precise evaluation of wheelset strength and safety has been desired. Damages of railway wheel are a spatting by wheel/rail contact and thermal crack by braking heat etc. One of the main source of damage is a residual stress. therefore it is important to evaluate exactly. A Residual stress of wheel is formed at the process of heat treatment when manufacturing. it is changed by contact stress developed by wheel/rail contact and thermal stress from heat induced in braking. The objective of this paper is to estimate the variation and magnitude of the residual stress of railway wheel.

  • PDF

석탄 화력발전소 송풍기 맥동감시장치 운전을 위한 제어로직 개발 (Development of Control Logic for Operation of Fan Stall Warning Equipment Used in Coal-Thermal Power Plant)

  • 노용기;조현섭;장성환
    • 한국산학기술학회논문지
    • /
    • 제7권5호
    • /
    • pp.837-846
    • /
    • 2006
  • 본 논문에서는 석탄 화력발전소(500[MW]) 보일러의 통풍계통에 적용되는 축류형 송풍기가 정상 운정 중 맥동과 같은 특수한 현상이 발생하게 되어 비정상적으로 운전함으로써 날개를 파손시키게 된다. 이러한 비정상 운전을 방지하기 위해 기존의 맥동 감시 장치에 본 연구에서 제안하는 제어 로직을 적용한 시스템에 대해 현장 실험을 통한 신뢰성 평가를 하였다.

  • PDF

연삭 가공시 Mist의 냉각효과에 관한 연구 (A Study on the Cooling Effects of Mist in the Grinding)

  • 이석우;최헌종;김대중
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.918-921
    • /
    • 2001
  • In grinding process, the heat of $1200^{\circ}$~$1500^{\circ}$ on the grinding area between grinding wheel and workpiece is generated. It decreases the surface integrity of workpiece and causes the thermal damages such as the deformed layer, residual stress and grinding burn. Generally coolant is widely used for preventing the heat generation on the grinding area, but it deteriorates the working condition by polluting the atmosphere of workplace and in the end pollutes the environment. The grinding methods using the compressed cold air and mist are the cooling methods to substitute conventional coolant. They can decrease the environmental pollution through not using coolant any more or minimizing it. In this study, the cooling effects of grinding methods using the compressed cold air and mist have been investigated. The grinding system equipped with the water bathe and mist spray nozzle was developed. The energy partition to workpiece through measuring the temperature on the workpiece surface was calculated. The surface integrity of workpiece and thermal damage like the deformed layer were analyzed.

  • PDF

초음파 서모그라피를 이용한 빠른 PCB 결함 검출 (Fast Defect Detection of PCB using Ultrasound Thermography)

  • 조재완;서용칠;정승호;김승호;정현규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권2호
    • /
    • pp.68-71
    • /
    • 2006
  • Active thermography has been used for several years in the field of remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements are performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

Zn-Al-Mg 합금도금강판의 헤어라인 처리가 표면흑색화 및 열확산도에 미치는 영향 (Effects of hairline treatment on surface blackening and thermal diffusion of Zn-Al-Mg alloy-coated steel sheet)

  • 박진성;윤덕빈;김상헌;김태엽;김성진
    • 한국표면공학회지
    • /
    • 제56권1호
    • /
    • pp.69-76
    • /
    • 2023
  • The effects of hairline treatment on surface blackening and thermal diffusion behaviors of Zn-Al-Mg alloy coated steel sheet were evaluated by the three-dimensional surface profiler and laser-flash technique. The metallographic observation of coating damages by hairline treatments showed that several cracks were initiated and propagated along the interface between primary Zn/eutectic phases. As the hairline processing became more severe, the crack occurrence frequency in eutectic phase of coating layer and the surface roughness increased, which had a proportional relationship with the level of blackening on the coating surface. In addition, the higher interfacial areas of the blackened coating surface, caused by the hairline process, led to an increase in thermal diffusivity and conductivity of the coated steel sheet. On the other hand, when the coating damage by hairline treatment was excessive and the steel substrate was exposed, there was little difference between the thermal diffusivity/conductivity of the untreated sample though the blackening degree was higher than that of untreated sample. This work suggests that the increase in the surface areas of the coating layer without exposure to steel substrate through hairline treatment can be one of the effective technical strategies for the development of Zn-Al-Mg alloy coated steel sheets with higher blackening level and thermal diffusivity.

단열공법이 적용된 겨울철 도로터널의 동결저감 효과 분석 (Analysis on Freezing Reduction of Road Tunnels with Heat Insulation Method during Winter)

  • 손희수;전경재;윤찬영
    • 한국지반공학회논문집
    • /
    • 제33권8호
    • /
    • pp.17-27
    • /
    • 2017
  • 우리나라 북동부에 위치하고 있는 강원지역은 겨울철 일 평균온도가 영상권을 유지하는 타 지역들과는 달리 일평균온도가 영하로 떨어지는 가장 추운 지역이다. 이에따라 지속적으로 도로터널의 라이닝부에 대한 동결피해 발생 사례가 보고되고 있으나 동결피해 저감을 위한 단열설계 기준 및 관련 연구는 아직까지 매우 부족하다. 본 연구에서는 단열공법 적용에 따른 도로터널의 동결저감 효과를 분석하기 위하여 겨울철 강원지역 도로터널의 지반특성과 기후특성을 고려한 해석적 연구를 수행하였다. 그 결과, 라이닝부의 콘크리트와 숏크리트 두께의 차이는 동결심도에 큰 영향을 미치지 않는 것으로 나타났으나 단열재의 적용 시에는 동결심도가 크게 감소하는 것으로 나타났다. 또한 배면지반의 열전도율과 외기온도 지속지간의 변화에 따라서 동결심도가 큰 영향을 받으므로 이러한 영향을 고려하여 단열재의 두께를 산정하여 적용한다면 우수한 동결저감 효과를 보일 것으로 판단된다.

열 나노임프린트 리소그래피에서 사용되는 스탬프와 폴리머 재료 사이의 점착 특성 (Adhesion Characteristics between Stamp and Polymer Materials Used in Thermal Nanoimprint Lithography)

  • 김광섭;강지훈;김경웅
    • Tribology and Lubricants
    • /
    • 제22권4호
    • /
    • pp.182-189
    • /
    • 2006
  • In this paper, the adhesion characteristics between a fused silica without or with an anti-sticking layer and a thermoplastic polymer film used in thermal NIL were investigated experimentally in order to identify the release performance of the anti-sticking layer. The anti-sticking layers were derived from fluoroalkylsilanes, (1H, 1 H, 2H, 2H-perfluorooctyl)trichlorosilane ($F_{13}-OTS$) and (3, 3, 3-trifluoropropyl)trichlorosilane (FPTS), and coated on the silica surface in vapor phase. The commercial polymers, mr-I 7020 and 8020 (micro resist technology, GmbH), for thermal NIL were spin-coated on Si substrate with a rectangular island which was fabricated by conventional microfabrication process to achieve small contact area and easy alignment of flat contact sur- faces. Experimental conditions were similar to the process conditions of thermal NIL. When the polymer film on the island was separated from the silica surface after imprint process, the adhesion force between the silica surface and the polymer film was measured and the surfaces of the silica and the polymer film after the separation were observed. As a result, the anti-sticking layers remarkably reduced the adhesion force and the surface damage of polymer film and the chain length of silane affects the adhesion characteristics. The anti-sticking layers derived from FPTS and $F_{13}-OTS$ reduced the adhesion force per unit area to 38% and 16% of the silica sur-faces without an anti-sticking layer, respectively. The anti-sticking layer derived from $F_{13}-OTS$ was more effective to reduce the adhesion, while both of the anti-sticking layers prevented the surface damages of the polymer film. Finally, it is also found that the adhesion characteristics of mr-I 7020 and mr-I 8020 polymer films were similar with each other.

Sand particle-Induced deterioration of thermal barrier coatings on gas turbine blades

  • Murugan, Muthuvel;Ghoshal, Anindya;Walock, Michael J.;Barnett, Blake B.;Pepi, Marc S.;Kerner, Kevin A.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권1호
    • /
    • pp.37-52
    • /
    • 2017
  • Gas turbines operating in dusty or sandy environment polluted with micron-sized solid particles are highly prone to blade surface erosion damage in compressor stages and molten sand attack in the hot-sections of turbine stages. Commercial/Military fixed-wing aircraft engines and helicopter engines often have to operate over sandy terrains in the middle eastern countries or in volcanic zones; on the other hand gas turbines in marine applications are subjected to salt spray, while the coal-burning industrial power generation turbines are subjected to fly-ash. The presence of solid particles in the working fluid medium has an adverse effect on the durability of these engines as well as performance. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The focus of this research work is to simulate particle-surface kinetic interaction on typical turbomachinery material targets using non-linear dynamic impact analysis. The objective of this research is to understand the interfacial kinetic behaviors that can provide insights into the physics of particle interactions and to enable leap ahead technologies in material choices and to develop sand-phobic thermal barrier coatings for turbine blades. This paper outlines the research efforts at the U.S Army Research Laboratory to come up with novel turbine blade multifunctional protective coatings that are sand-phobic, sand impact wear resistant, as well as have very low thermal conductivity for improved performance of future gas turbine engines. The research scope includes development of protective coatings for both nickel-based super alloys and ceramic matrix composites.

전자 빔 물리적 증착(EB-PVD)법으로 코팅된 YSZ 열차폐층의 압흔손상 거동에 대한 하부층의 영향 (Influence of Subsurface Layer on the Indentation Damage Behavior of YSZ Thermal Barrier Coating Layers Deposited by Electron Beam Physical Vapor Deposition)

  • 허용석;박상현;한인섭;우상국;정연길;백운규;이기성
    • 한국세라믹학회지
    • /
    • 제45권9호
    • /
    • pp.549-555
    • /
    • 2008
  • The thermal barrier coating must withstand erosion when subjected to flowing gas and should also maintain good stability and mechanical properties while it must also protect the turbine component from high temperature, hot corrosion, creep, and oxidation during operation. In this study we investigated the influence of subsurface layer, $Al_2O_3$ or NiCrCoAIY bond coat layer, on the indentation damage behavior of YSZ thermal barrier coating layers deposited by electron beam physical vapor deposition (EB-PVD). The bond coat is deposited using different process such as air plasma spray (APS) or spray of high velocity oxygen fuel (HVOF) and the thickness is varied. Hertzian indentation technique is used to induce micro damages on the coated layer. The stress-strain behaviors are characterized by results of the indentation tests.