• Title/Summary/Keyword: Thermal crack

Search Result 738, Processing Time 0.029 seconds

Vibration analysis of carbon nanotubes with multiple cracks in thermal environment

  • Ebrahimi, Farzad;Mahmoodi, Fatemeh
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.57-80
    • /
    • 2018
  • In this study, the thermal loading effect on free vibration characteristics of carbon nanotubes (CNTs) with multiple cracks is studied. Various boundary conditions for nanotube are taken in to account. In order to take the small scale effect, the nonlocal elasticity of Eringen is employed in the framework of Euler-Bernoulli beam theory. This theory states that the stress at a reference point is a function of strains at all points in the continuum. A cracked nanotube is assumed to be consisted of two segments that are connected by a rotational spring which is located in the position of the cracked section. Hamilton's principle is used to achieve the governing equations. Influences of the nonlocal parameter, crack severity, temperature change and the number of cracks on the system frequencies are investigated. Also, it is found that at room or lower temperature the natural frequency for CNT decreases as the value of temperature change increases, while at temperature higher than room temperature the natural frequency of CNT increases as the value of temperature change increases. Various boundary conditions have been applied to the nanotube.

An Experimental Study on Hydration Heat Control in The Mass Concrete Using Oscillating Capillary Tube Heat Pipe (진동세관형 히트파이프(OCHP)를 이용한 매스콘크리트의 수화열 제어에 관한 실험적 연구)

  • Beak, Dong-Il;Kim, Myung-Sik;Lee, Moon-Sik;Kim, Kang-Min;Yum, Chi-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.409-412
    • /
    • 2006
  • In process of reinforced concrete(RC) box structure, the heat of hydration may cause serious thermal cracking problems. In order to eliminate hydration heat of mass concrete, this paper reports results of hydration heat control in mass concrete using the OCHP(Oscillating Capillary tube Heat Pipe). Recently OCHP is drawn special attention from these points of low cost as well as short construction schedule for the manufacturing of heat exchanger, flexibility, simplification and high performance. There were three RC box molds$(1.2{\times}1.2{\times}1.2m)$ which shows a difference as compared with each other. One was not equipped with OCHP. While others were equipped with OCHP and these were cooled with air natural convection and spraying water respectively. The OCHP was composed of copper pipe with 12 turns(O.D : 4mm, I.D : 2.8mm). The working fluid was R-22 and its charging ratio was 30(Vol. %). In order to analyze the distribution of temperature and index figure of thermal crack in sequential placement of mass concrete, we used HYCON of computer program. As a result of the experiment, the peak temperature decreased about $15.6\sim23.4^{\circ}C$ than the general specimen and the probability of thermal crack generated in mass concrete decreased up to 0%.

  • PDF

An Experimental Study on Cooling of Hydration Heat of Mass Concrete Structure using Pulsating Heat Pipe in Summer Season (진동형 히트 파이프를 이용한 하계 매스 콘크리트의 수화열 냉각에 관한 실험적 고찰)

  • Yang, Tae-Jin;Kim, Jeong-Hoon;Kim, Jong-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.51-57
    • /
    • 2007
  • In process of reinforced concrete (RC) box structure. the heat of hydration may cause serious thermal cracking. In order to eliminate hydration heat of mass concrete. this paper reports results of hydration heat control in mass concrete structure using the pulsating heat pipe. There were three RC box molds($1.2{\times}l.8{\times}2.4m^3$) which shows a difference as compared with each other. One was not equipped with pulsating heat pipe. The others were equipped with pulsating heat pipe. All of them were cooled with natural air convection. The pulsating heat pipe was composed of serpentine type copper pipe with 10 turns (outer diameter: 4mm. inner diameter: 2.8mm). The working fluid was R-22 and its charging ratio was 40% by volume. The conditions such as the number of turns. the length and the pitch of the pulsating heat pipe and the size of concrete structure were changed. Based on these experiments, it was confirmed that this construction method using pulsating heat pipe was effective to remove hydration heat of mass concrete structure and thus it was possible to prevent harmful thermal crack and construction Period and costs of concrete structure would be cut down.

Evaluation of wear chracteristics for $Al_{2}O_{3}-40%TiO_{2}$ sprayed on casting aluminum alloy (주조용 알루미늄합금의 $Al_{2}O_{3}-40%TiO_{2}$ 용사층에 대한 마멸특성 평가)

  • 채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.183-190
    • /
    • 1997
  • The wear behaviors of $Al_2O_3-40%TiO_2$ deposited on casting aluminum alloy(ASTM A356) by plasma spray against SiC ball have been investigated experimentally. Friction and wear tests are carried out at room temperature. The friction coefficient of $Al_2O_3-40%TiO_2$ coating is lower than that of pure $Al_2O_3$ coating(APS). It is found that low friction correspond to low wear and high friction to high wear in the experimental result. The thickness of $Al_2O_3-40%TiO_2$ coatings indicated the existence of the optimal coating thickness. It is found that a voids and porosities of coating surface result in the crack generated. As the tensile stresses in coating increased with the increased friction coefficient. The columnar grain of coating will be fractured to achieve the critical stress. It is found that the cohesive of splats and the porosity of surface play a role in wear characteristics. It is suggested that the mismatch of thermal expansion of substrate and coating play an important role in wear performance. Tensile and compressire under thermo-mechanical stress may be occurred by the mismatch between thermal expansion of substrate and coating. This crack propagation above interface is observed in SEM.

  • PDF

The Crack Resistance for PSG and Pe-Sin Films in the Semiconductor Device (반도체소자의 표면보호용 PSG, PE-SIN박막의 항균열특성에 대한 연구)

  • Ha, Jung-Min;Shin, Hong-Jae;Lee, Soo-Woong;Kim, Young-Wug;Lee, Jung-Kyu
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.166-174
    • /
    • 1993
  • Abstract The crack resistance of PSG(Phosphosilicate Glass) and PE-SiN(Plasma Enhanced CVD S${i_2}{N_4}$)films deposited on aluminium thin films on Si substrate was analyzed in this study. PSG was deposited by AP-CVD and PE- SiN by PE-CVD. All the films underwent repeated heat cycles at 45$0^{\circ}C$for 30 min. Crack formation and development were examined between each heat cycle. The crack behavior was found to be closely related to the stresses in the films. The stress induced by the difference in thermal expansion behavior between the passivation layers and underlying aluminum film may cause the crack. Crack resistance decreases as the thickness of PSG films increases due to the high tensile stress of the films. Phosphorus in the PSG films releases tensile stress and consequently the stress of the films tends to show compressive stress. As a result, crack resistance increased as the concentratin of P in the PSG films increased. Crack resistance in the PE-SiN films also increased with compressive stress. An experimental model to predict crack generation in the PSG and PE-SiN films during heat cycle was suggested.

  • PDF

Evaluation of the Crack Tip Stress Distribution Considering Constraint Effects in the Reactor Pressure Vessel (구속효과를 고려한 원자로 압력용기 균열선단에서의 응력분포 예측)

  • Kim, Jin-Su;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.756-763
    • /
    • 2001
  • In the process of integrity evaluation for nuclear power plant components, a series of fracture mechanics evaluation on surface cracks in reactor pressure vessel(RPV) must be conducted. These fracture mechanics evaluation are based on stress intensity factor, K. However, under pressurized thermal shock(PTS) conditions, the combination of thermal and mechanical stress by steep temperature gradient and internal pressure causes considerably high tensile stress at the inside of RPV wall. Besides, the internal pressure during the normal operation produces high tensile stress at the RPV wall. As a result, cracks on inner surface of RPVs may experience elastic-plastic behavior which can be explained with J-integral. In such a case, however, J-integral may possibly lose its validity due to constraint effect. In this paper, in order to verify the suitability of J-integral, tow dimensional finite element analyses were applied for various surface cracks. A total of 18 crack geometries were analyzed, and $\Omega$ stresses were obtained by comparing resulting HRR stress distribution with corresponding actual stress distributions. In conclusion, HRR stress fields were found to overestimate the actual crack-tip stress field due to constraint effect.

Heat of Hydration and Thermal Crack Control for Floating Concrete Mass Foundation (부상식 매스콘크리트 기초의 수화열 관리 및 온도균열 제어)

  • Rhee, In-Kyu;Kim, Kwang-Don;Kim, Tae-Ook;Lee, Jun-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.156-164
    • /
    • 2010
  • A total of 6 stepwise constructions were made for building the floating mass concrete foundation. The optimal curing strategies and specialized construction guidelines were adoptively extracted from the 1.5m cube mock-up test prior to the main concrete work. Two different thermal crack index(TCI) calculations from current construction manual exhibit relatively low values as comparing the measured temperature data. This implies that the hydration-induced cracking could be developed in parts of concrete mass. However, the controversial phenomenons in reality were observed. No significant surface cracks are detected at the successive construction stages. Thereby, this paper raises the question regarding on the existence of characteristic length with varying size and shape of a target specimen which are missing in the current construction manual. The isothermal core area and high thermal gradient area in the edge volume should be identified and be introduced to TCI calculation for the purpose of an accuracy.

A Study on the Thermal Shock Characteristics of the Rocket Nozzle Material (로켓 노즐 재료의 열충격특성에 관한 연구)

  • Lee, Jang-Won;Lee, Young-Shin;Kim, Jae-Hoon;Kim, Seung-Joong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.562-566
    • /
    • 2004
  • Thermal shock is a physical phenomenon that occurs in the condition of the exposure of a rapidly large temperature and pressure change of in the quenching condition of material. The rocket nozzle is exposed to high temperature combustion gas, it may have failure and erosion deformation. So, it is important to select a suitable material having excellent thermal shock properties and evaluate these materials in rocket design. In this study, the temperature gradient and crack initiation of rocket nozzle material is investigated using by FEM under thermal shock condition. This is very important information in the design process of thermal structure.

  • PDF

A Study on Shape Design of Motorcycle Disk using Thermal and Stress Analysis (모터싸이클 디스크 브레이크의 열 및 응력 해석을 통한 형상 설계)

  • 강석현;박시형;이성수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.363-368
    • /
    • 2001
  • Studies on brake system recently are focused on braking performance, especially the consideration on safety of braking system in an extreme situation and reduction of vibration and noise during braking operation. The thermal crack and Judder from the friction between brake disc and pad can bring the threaten of passengers' safety in the end. Braking force comes from the change of kinetic energy to friction energy. Since heat energy is developed from here, the analysis on thermal stress and thermal strain can be the good data when selecting the material of brake pad and designing heat radiation holes on the disc and it will also be the data when designing the thickness of the disc. This paper is intended to show a creative design method by suggesting the thermal analysis data through FEM study and using shape design parameters.

  • PDF