• Title/Summary/Keyword: Thermal chemical

Search Result 4,515, Processing Time 0.034 seconds

The Review of Design and Installation of the Thermal Relief Valve with It's Surrounding Facility in a Chemical Plant Piping System (배관계에서 열팽창을 고려한 열팽창매출변 및 주변설비의 설계와 설치에 관한 고찰)

  • 차순철;김영배
    • Journal of the Korean Professional Engineers Association
    • /
    • v.30 no.3
    • /
    • pp.104-114
    • /
    • 1997
  • Throughout the practical process engineering design and commissioning 8E startup experiences focused on chemical process safety, the review of design and installation of the thermal relief valve with its surrounding facility in a chemical plant piping system is made to help the better understanding of the piping system of characteristics of thermal relief valve which Is consisting of theoretical approach, correlation in terms of temperature and pressure increase caused by external heat supply in a piping system, consideration of thermal relief valve design, pressure relieving system of serial thermal relief valves and exception of their installation. It is earnestly recommended that following topic should be implemented during thermal relief valve design, installation and normal operation as well.

  • PDF

A Study on Electrical and Thermal Properties of Polyimide/MWNT Nanocomposites

  • Park, Soo-Jin;Chae, Sung-Won;Rhee, John-Moon;Kang, Shin-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2279-2282
    • /
    • 2010
  • In this work, the electrical and thermal properties of polyimide/multi-walled carbon nanotube (MWNT) nanocomposites were investigated. The polyimide/MWNT nanocomposites contained from 0 to 2.0 wt % of MWNT. The electrical properties of the polyimide films were characterized by a specific resistance measurement. The thermal properties were evaluated using thermogravimetric analysis (TGA) and a differential scanning calorimeter (DSC). It was found that the thermal properties of the polyimide nanocomposites increased with increasing MWNT content and specific resistance as well. This result indicated that the crosslinking of polyimide/MWNT nanocomposites was enhanced by good distribution of the MWNT in the polyimide resins, resulting in the increase of the electrical and thermal properties of the nanocomposites.

Optimization red emission of SrMoO4: Eu3+ via hydro-thermal co-precipitation synthesis using orthogonal experiment

  • Tan, Yongjun;Luo, Xuedan;Mao, Mingfu;Shu, Dehua;Shan, Wenfei;Li, Guizhi;Guo, Dongcai
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1403-1409
    • /
    • 2018
  • In the present study, the $SrMoO_4:Eu^{3+}$ phosphors has been synthesized through hydro-thermal co-precipitation method, and single factor and orthogonal experiment method was adopted to find optimal synthesis condition. It is interesting to note that hydro-thermal temperature is a prominent effect on the luminescent intensity of $SrMoO_4:Eu^{3+}$ red phosphor, followed by co-precipitation temperature, calcining time, and the doping amount of $Eu^{3+}$. The optimal synthesis conditions were obtained: hydro-thermal temperature is $145^{\circ}C$, co-precipitation temperature is $35^{\circ}C$, the calcining time is 2.5 h, and the doping amount of activator $Eu^{3+}$ is 25%. Subsequently, the crystalline particle size, phase composition and morphology of the synthesized phosphors were evaluated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results show that these phosphors possess a scheelite-type tetragonal structure, and the particle size is about $0.2{\mu}m$. Spectroscopic investigations of the synthesized phosphors are carried out with the help of photo-luminescence excitation and emission analysis. The studies reveal that $SrMoO_4:Eu^{3+}$ phosphor efficiently convert radiation of 394 nm-592 and 616 nm for red light, and the luminescence intensity of $SrMoO_4:Eu^{3+}$ phosphors is improved. $SrMoO_4:Eu^{3+}$ phosphors may be a potential application for enhancing the efficiency of white LEDs.

Numerical Study of Rocket Exhaust Plume with Equilibrium Chemical Reaction and Thermal Radiation (평형화학반응과 복사열전달을 고려한 로켓 플룸 유동 해석)

  • Shin J.-R.;Choi J.-Y.;Choi H.-S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.146-153
    • /
    • 2004
  • The Numerical study has been carried out to investigate the effects of chemical reaction and thermal radiation on the rocket plume flow-field at various altitudes. The theoretical formulation is based on the Navier-Stokes equations for compressible flows along with the infinitely fast chemistry and thermal radiation. The governing equations were solved by a finite volume fully-implicit TVD(Total Variation Diminishing) code which uses Roe's approximate Riemann solver and MUSCL(Monotone Upstream-centered Schemes for Conservation Laws) scheme. LU-SGS (Lower Upper Symmetric Gauss Seidel) method is used for the implicit solution strategy. An equilibrium chemistry module for hydrocarbon mixture with detailed thermo-chemical properties and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. In this study, kerosene-fueled rocket was assumed operating at O/F ratio of 2.34 with a nozzle expansion ratio of 6.14. Flight conditions considered were Mach number zero at ground level, Mach number 1.16 at altitude 5.06km and Mach number 2.9 at altitude 17.34km. Numerical results gave the understandings on the detailed plume structures at different altitude conditions. The diffusive effect of the thermal radiation on temperature field and the effect of chemical recombination during the expansion process could be also understood. By comparing the results from frozen flow and infinitely fast chemistry assumptions, the excess temperature of the exhaust gas resulting from the chemical recombination seems to be significant and cannot be neglected in the view point of performance, thermal protection and flow physics.

  • PDF

Surface modified ceramic fiber separators for thermal batteries

  • Cheong, Hae-Won;Ha, Sang-Hyeon;Choi, Yu-Song
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.308-311
    • /
    • 2012
  • A wide range of possible hazards existing in thermal batteries are mainly caused by thermal runaway, which results in overheating or explosion in extreme case. Battery separators ensure the separation between two electrodes and the retention of ion-conductive electrolytes. Thermal runaways in thermal batteries can be significantly reduced by the adoption of these separators. The high operating temperature and the violent reactivity in thermal batteries, however, have limited the introduction of conventional separators. As a substitute for separators, MgO powders have been mostly used as a binder to hold molten salt electrolyte. During recent decades the fabrication technology of ceramic fiber, which has excellent mechanical strength and chemical stability, has undergone significant improvement. In this study we adopted wet-laid nonwoven paper making method instead of the electrospinning method which is costly and troublesome to produce in volume. Polymeric precursor can readily be coated on the surface of wet-laid ceramic paper, and be formed into ceramic film after heat treatment. The mechanical strength and the thermo-chemical stability as well as the wetting behaviors of ceramic separators with various molten salts were investigated to be applicable to thermal batteries. Due to their excellent chemical, mechanical, and electrical properties, wet-laid nonwoven separators made from ceramic fibers have revealed positive possibility as new separators for thermal batteries which operate at high temperature with no conspicuous sign of a short circuit and corrosion.

Physical Properties and Morphology of Carbon Nanotubes Prepared by Thermal and Plasma CVD of Acetylene (아세틸렌의 열 및 플라즈마 CVD법으로 제조한 탄소나노튜브의 물성과 구조적 특성)

  • Kim, Myung-Chan;Moon, Seung-Hwan;Lim, Jae-Seok;Hahm, Hyun-Sik;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.174-181
    • /
    • 2004
  • Multi-walled carbon nanotubes (CNTs) were prepared by thermal chemical vapor deposition (CVD) and microwave plasma chemical vapor deposition (MPCVD) using various combination of binary catalysts with four transition metals such as Fe, Co, Cu, and Ni. In the preparation of CNTs from acetylene precursor by thermal CVD, the CNTs with very high yield of 43.6 % was produced over $Fe-Co/Al_2O_3$. The highest yield of CNTs was obtained with the catalyst reduced for 3 hr and the yield was decreased with increasing reduction time to 5 hr, due to the formation of $FeAl_2O_4$ metal-aluminate. On the other hand, the CNTs prepared by acethylene plasma CVD had more straight, smaller diameter, and larger aspect ratio(L/D) than those prepared by thermal CVD, although their yield had lower value of 27.7%. The degree of graphitization of CNTs measured by $I_d/I_g$ value and thermal degradation temperature were 1.04 and $602^{\circ}C$, respectively.

Syntheses and Thermal Behaviors of Rb(FOX-7)·H2O and Cs(FOX-7)·H2O

  • Luo, Jinan;Xu, Kangzhen;Wang, Min;Song, Jirong;Ren, Xiaolei;Chen, Yongshun;Zhao, Fengqi
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2867-2872
    • /
    • 2010
  • Two new energetic organic alkali metal salts, 1,1-diamino-2,2-dinitroethylene rubidium salt [Rb(FOX-7)${\cdot}H_2O$] and 1,1-diamino-2,2-dinitroethylene cesium salt [Cs(FOX-7)${\cdot}H_2O$], were synthesized by reacting of 1,1-diamino-2,2-dinitroethylene (FOX-7) and rubidium chloride or cesium chloride in alkali methanol aqueous solution, respectively. The thermal behaviors of Rb(FOX-7)${\cdot}H_2O$ and Cs(FOX-7)${\cdot}H_2O$ were studied with DSC and TG methods. The critical temperatures of thermal explosion of the two compounds are 216.22 and $223.73^{\circ}C$, respectively. Specific heat capacities of the two compounds were determined with a micro-DSC method, and the molar heat capacities are 217.46 and $199.47\;J\;mol^{-1}\;K^{-1}$ at 298.15 K, respectively. The adiabatic times-to-explosion were also calculated to be a certain value of 5.81 - 6.36 s for Rb(FOX-7)${\cdot}H_2O$, and 9.92 - 10.54 s for Cs(FOX-7)${\cdot}H_2O$. After FOX-7 becoming alkali metal salts, thermal decomposition temperatures of the compounds heighten with the rise of element period, but thermal decomposition processes become intense.

Improvement of Thermal Conductivity of Poly(dimethyl siloxane) Composites Filled with Boron Nitride and Carbon Nanotubes (보론 나이트라이드와 탄소나노튜브로 충전된 실리콘 고무의 열전도도 향상)

  • Ha, Jin-Uk;Hong, Jinho;Kim, Minjae;Choi, Jin Kyu;Park, Dong Wha;Shim, Sang Eun
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.722-729
    • /
    • 2013
  • In order to enhance the thermal conductivity of poly(dimethyl siloxane) (PDMS), boron nitride (BN) and carbon nanotubes (CNTs) were incorporated as the thermally conductive fillers. The amount of BN was increased from 0 to 100 phr (parts per hundred rubber) and the amount of CNTs was increased from 0 to 4 phr at a fixed amount of the boron nitride (100 phr). The thermal conductivity of the composites increased with an increasing concentration of BN, but the incorporation of CNTs had only a slight effect on the enhancement of thermal conductivity. Unexpectedly, the thermal degradation of the composites was accelerated by the addition of CNTs in 100 phr BN filled PDMS. Activation energy for thermal decomposition of the composites was calculated using the Horowitz-Metzger method. The curing behavior, electrical resistivity, and mechanical properties of PDMS filled with BN and CNTs were investigated.

Thermal Stability of Trifunctional Epoxy Resins Modified with Nanosized Calcium Carbonate

  • Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.334-338
    • /
    • 2009
  • Trifunctional epoxy resin triglycidyl paraaminophenol (TGPAP)/$CaCO_3$ nanocomposites were prepared using the melt blending method. The effects of nano-$CaCO_3$ content on the thermal behaviors, such as cure behavior, glass transition temperature ($T_g$), thermal stability, and the coefficient of thermal extension (CTE), were investigated by several techniques. Differential scanning calorimetry (DSC) results indicated that the cure reaction of the TGPAP epoxy resin was accelerated with the addition of nano-$CaCO_3$. When the nano-$CaCO_3$ content was increased, the $T_g$ of the TGPAP/$CaCO_3$ nanocomposites did not obviously change, whereas the crosslinking density was linearly increased. The nanocomposites showed a higher thermal stability than that of the neat epoxy resin. This result could be attributed to the increased surface contact area between the nano-$CaCO_3$ particles and the epoxy matrix, as well as the high crosslinking density in the TGPAP/$CaCO_3$ nanocomposites. The CTE of the nanocomposites in the rubbery region was significantly decreased as the nano-$CaCO_3$ content was increased.

Synthesis and Thermal Stability of Polyol Esters (폴리올에스테르의 합성 및 열안정성)

  • Baek, Jin-Wook;Chung, Keun-Wo;Kim, Young-Wun;Seo, In-Ok;Han, Jung-Sik
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.130-134
    • /
    • 2002
  • Polyol esters were synthesized by condensation reaction of polyols (PE and DIPE) and linear acids such as valeric acid, caproic acid, heptylic acid and caprylic acid. The structures of polyol esters were confirmed by gas chromatography. Hot tube test was used to measure thermal stability of polyol esters and its thermal properties depended on the structure of acid moiety contained in polyol esters.

  • PDF