• Title/Summary/Keyword: Thermal buoyancy

Search Result 125, Processing Time 0.025 seconds

A Comparative Study Between Diffusive-thermal and Buoyancy-driven Self-excitations in Laminar Free Jet Flames with Applied DC Electric Fields (직류전기장이 인가된 층류제트화염에서 물질 -열 확산과 부력에 의한 진동비교에 관한 연구)

  • Han, Jong-Kyu;Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Kim, Tae-Hyung;Park, Jong-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.37-47
    • /
    • 2012
  • Experimental study on comparison of diffusive-thermal self-excitation with buoyancy-driven one due to accumulation of partially premixed, preheated mixture in front of edge flame was conducted in horizontally and vertically injected laminar free-jet flames with an applied DC electric field of -10 kV. The application of horizontal injection method with the DC electric field to jet flames was experimentally designed to suppress heat-loss-induced self-excitation and thereby to highlight the definite difference between both diffusive-thermal and buoyancy-driven self-excitations with the same order of O(1.0 Hz), in that diffusive-thermal self-excitation has not been so far found experimentally in laminar jet flames. Flame stability maps in vertically and horizontally injected jet flames are presented. The distinct modes of individual self-excitation are shown to be well described by their own phase diagrams. The results show that buoyancy-driven self-excitation due to the accumulation of partially premixed, preheated mixtures in front of edge flame is branched from the buoyancy-induced self-excitation with O(10 Hz) due to a flame flicker. Once the buoyancy-driven self-excitation appears, it suppresses buoyancy-induced as well as diffusive-thermal self-excitation. The key characteristics for individual self-excitation are discussed and their functional dependencies of Strouhal number upon related physical parameters are also presented.

An Experimental Study on the Thermal Behavior of Aquifer Thermal Energy Storage System (대수층 축열시스템의 열거동에 관한 실험적 연구)

  • 이세균;문병수;남승백;김기덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1780-1787
    • /
    • 1992
  • Experiments have been performed on the thermal behavior in a liquid saturated porous medium in a system to simulate a single well aquifer thermal energy storage system. The principal interests in this study are the combined effects of forced and natural convection. Significant buoyancy flow due to natural convection is developed quickly as the temperature difference between the injection and original aquifer temperature increases. Theoretical model under simplified assumptions (called simple buoyancy flow model in this study) has been developed. The results of this model agree well with the experiments. The effects of buoyancy flow on the recovery factor are also examined in this study.

Diffusive-Thermal Instability and Buoyancy-Driven Instability in Laminar Attached Free-jet Flames with DC Electric Fields (직류 전기장을 인가한 층류부착화염에서 물질-열 확산 및 부력에 의한 화염진동 비교에 관한 연구)

  • Han, Jong-Kyu;Yoon, Sung-Hwan;Park, Jeong;Yun, Jin-Han;Gil, Sang-In;Seo, Sang-Il;Kim, Young-Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.3
    • /
    • pp.41-51
    • /
    • 2011
  • In this paper, we describe the behavior of two self-excitations in laminar attached free-jet flames under the influence of DC electric fields, one of buoyancy-driven and the other of diffusion-thermal instability, established from the horizontal and vertical injection. In the horizontal injection with removed buoyancy effect, oscillating flames with the frequency of 1.3 - 7.4 Hz were observed in a certain condition with Lewis number more than unity. On the other hand, it was appeared Lewis number induced self-excitation as well as buoyancy-driven self-excitation in the vertical upward injection with DC electric fields. This behavior had frequency range of 1.6 - 9.4 Hz and was exhibited to attribute the buoyancy effect. Finally, a well-defined division about two self-excitations having similar frequency range is briefly discussed.

A fundamental study on the jet fan capacity for smoke control considering thermal buoyancy force in tunnel fires (터널 화재 시 열부력을 고려한 제연용 제트팬 용량산정에 관한 기초 연구)

  • Lee, Ho-Hyung;Choi, Pan-Gyu;Jo, Jong-Bok;Lee, Seung-Chul;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.501-511
    • /
    • 2018
  • As a result of the recent revision of the 'Guideline for Installation and Management of Fire Prevention Facility in Road Tunnels', the thermal buoyancy has to be taken into account when calculating the capacity of jet fans for smoke control in tunnel fires. However, there is no detailed methodologies for considering thermal buoyancy, so further study is needed. In this study, the thermal buoyancy in the tunnel is calculated by 3-D numerical simulation to consider the thermal buoyancy in case of fire in tunnels, and the relationship between heat buoyancy and vehicle drag, And the method of calculating the capacity of the jet fan for smoke control in tunnels. According to the analysis results, heat buoyancy acts as a resistance force in the case of a down-slope tunnel, and the pressure rise of jet fan for smoke control is not simply determined by the value of heat buoyancy at the entrance of the tunnel and the value of the vehicle drag at the exit. And it is analyzed that it is necessary to carry out a comprehensive review according to the location of the fire vehicle in tunnels.

Study on Analysis of Buoyancy Effect in Air-heating Collector using Solar Heat (태양열을 이용한 공기가열 집열기의 부력효과 해석 연구)

  • Yang, Young-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_2
    • /
    • pp.467-474
    • /
    • 2021
  • The renewable energy is known as eco-friendly energy to reduce the use of fossil fuel and decrease the environmental pollution due to exhaust gas. Targets of solar collector in domestic are usually acquisitions of hot water and hot air. System of air-heating collector is one of the technologies for obtaining hot air in cases of especially heating room and drying agricultural product. The purpose of this study is to investigate the characteristics of thermal flow such as relative pressure, velocity, outlet temperature and buoyancy effect in air-heating collector using solar heat. The flow field of air-heating collector was simulated using ANSYS-CFX program and the behaviour of hot air was evaluated with SST turbulence model. As the results, The streamline in air-heating collector showed several circular shapes in case of condition of buoyancy. Temperature difference in cross section of outlet of air-heating collector did not almost show in cases of buoyancy and small inlet velocity. Furthermore merit of air-heating collector was not observed in cases of inlet velocities. Even though it was useful to select condition of buoyancy for obtaining high temperature, however, it was confirmed that the trade off between high temperature of room and rapid injection of hot air to room could be needed through this numerical analysis.

Numerical Analysis on Heat Transfer of Viscoelastic Fluid including Buoyancy Effect (부력의 영향을 포함한 점탄성 유체의 열전달에 관한 수치해석)

  • Sohn, Chang-Hyun;Ahn, Seong-Tae;Jang, Jae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.495-503
    • /
    • 2000
  • The present numerical study investigates flow characteristics and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The combined effect of temperature-dependent viscosity, buoyancy and secondary flow caused by second normal stress difference are all considered. The Reiner-Rivlin model is used as a viscoelastic fluid model to simulate the secondary flow and temperature-dependent viscosity model is adopted. Three types of thermal boundary conditions involving different combinations of heated walls and adiabatic walls are considered in this study. Calculated Nusselt numbers are in good agreement with experimental results in both the thermal developing and thermally developed regions. The heat transfer enhancement can be explained by the combined viscoelasticity-driven secondary flow, buoyancy-induced secondary flow and temperature-dependent viscosity.

A Hybrid Turbulence Model for Prediction of Buoyancy-Driven Turbulent Thermal Convection Flow (부력에 의한 난류 열대류의 혼성 난류모델)

  • 김태규;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2069-2078
    • /
    • 1993
  • The buoyancy-driven turbulent thermal convection is predicted using an anisotropic hybrid turbulence model, which is incorporated with a low Reynolds k-.epsilon. turbulence model and an anisotropic buoyant part of algebraic stress model(ASM). The numerical predictions are compared with the Davidson's model,(1) the full ASM and the experimental results of Cheesewright et al.(2) All the models are shown to predict good agreements with the experiments for the averaged turbulence quantities. It is found that the effect of an anisotropic part on the Reynolds stress and the turbulent heat fluxes is substantial. In this study, the present hybrid model gives a fairly reasonable prediction in terms of the computational accuracy, convergence and stability. The contribution of an anisotropic buoyant part to turbulent heat fluxes are also scrutinized over the range of Rayleigh numbers $(4.79{\times}10^{10}{\le}Ra{\le}7.46{\times}10^{10}).$

Numerical Analysis of Single Phase Thermal Stratification in both Cold Legs and Downcomer by Emergency Core Cooling System Injection : A Study on the Necessity to Consider Buoyancy Force Term (비상노심냉각계통 주입에 따른 저온관 및 강수관에서 단상 열성층 수치해석 : 부력항 고려 필요성에 관한 연구)

  • Lee, Gong Hee;Cheong, Ae Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.12
    • /
    • pp.654-662
    • /
    • 2017
  • When emergency core cooling system (ECCS) is operated during loss of coolant accident (LOCA) in a pressurized water reactor (PWR), pressurized thermal shock (PTS) phenomenon can occur as cooling water is injected into a cold leg, mixed with hot primary coolant, and then entrained into a reactor vessel. Insufficient flow mixing may cause temperature stratification and steam condensation. In addition, flow vibration may cause thermal stresses in surrounding structures. This will reduce the life of the reactor vessel. Due to the importance of PTS phenomenon, in this study, calculation was performed for Test 1 among six types of OECD/NEA ROSA tests with ANSYS CFX R.17. Predicted results were then compared to measured data. Additionally, because temperature difference between the hot coolant at the inlet of the cold leg and the cold cooling water at the inlet of the ECCS injection line is 200 K or more, buoyancy force due to density difference might have significant effect on thermal-hydraulic characteristics of flow. Therefore, in this study, the necessity to include buoyancy force term in governing equations for accurate prediction of single phase thermal stratification in both cold legs and downcomer by ECCS injection was numerically studied.

Study on Characteristics of Subchannel Analysis Code at Low Flow Steam Line Break Condition

  • Kwon, Hyuk-Sung;Lim, Jong-Seon;Hwang, Dae-Hyun;Chun, Tae-Hyun;Park, Jong-Ryul
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.403-408
    • /
    • 1996
  • The subchannel analysis was performed to verify the behavior of hot channel characteristics and obtain the information to support the core thermal-hydraulic behavior at post-trip steam line break with low flow condition. During this postulated accident, buoyancy-induced cross flow occurs, and the coupled nuclear and thermal-hydraulic interactions become important. The code predictions with TORC are in good agreement with the test data. Under such conditions, the mass flow increase in the hot channel by buoyancy-induced cross flow depends on the parameter $GR^{*}\;/\;Re^2$, and buoyancy effect becomes more noticeable as $GR^{*}\;/\;Re^2$ increases.

  • PDF

A Study on Buoyancy Effects in Double-Diffusive Convecting System (이중확산대류계에서의 부력효과에 관한 연구(Ⅰ)- 실험적 연구 -)

  • Kim, Yang-Hun;Hyun, Myung-Taek;Kim, Min-Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.121-129
    • /
    • 1999
  • Double-diffusive convection with verical temperature and concentration gradients in thermally stratified fluids has been investigated experimentally using an electrochemical technique. Cupric sulfuric-sulffuric acid solution confined between two horizontal copper electrodes was used. The change of thermal and solutal buoyance has no influence on the range of voltage for the limiting current. Due to Soret effect, the onset time of natural convection is delayed as the stabilizing thermal buoyancy decreases. Also it is found that the shrinkage of the unstabilizing solutal buoyancy makes the onset of natural convection retard. Multi-layered convective phenomena do not appear because cupric sulfate-sulfuric acid solution is thermally stratified, and heat diffuses faster than cupric sulfate solfate solution.

  • PDF