• 제목/요약/키워드: Thermal balance

검색결과 350건 처리시간 0.021초

SOFC Hot BOP 단열재 적용 방법에 따른 열평형 기대 효과에 대한 수치해석 연구 (A Numerical Study on the Expectation Effect of Thermal Balance according to SOFC Hot BOP Insulation Application Method)

  • 최규홍;황승식;김동균;최종균
    • 한국수소및신에너지학회논문집
    • /
    • 제28권5호
    • /
    • pp.512-520
    • /
    • 2017
  • This paper is a numerical study of various methods of applying SOFC hot BOP insulation. The application methods are four cases from case 1 to case 4, and the performance difference between the result of applying powdered insulation and the result of zoning using composite multi-layer insulation was examined. Numerical results show that the thermal stability of composite multi-layer insulation is better than that of powder insulation when the thermal conductivity is 0.04 W/mK. In the future, we will increase the thermal conductivity of the composite multi-layer thermal insulation material and find the greatest value of thermal conductivity with a similar result to that of the powder insulation.

대면적 셀 고분자 막전해질 연료전지의 열관리를 위한 2 차원 수치 해석 모델 (Two Dimensional Numerical Model for Thermal Management of Proton Exchange Membrane Fuel Cell with Large Active Area)

  • 유상석;이영덕;안국영
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.359-366
    • /
    • 2008
  • A two-dimensional thermal model of proton exchange membrane fuel cell with large active area is developed to investigate the performance of fuel cell with large active area over various thermal management conditions. The core sub-models of the two-dimensional thermal model are one-dimensional agglomerate structure electrochemical reaction model, one-dimensional water transport model, and a two-dimensional heat transfer model. Prior to carrying out the simulation, this study is contributed to set up the operating temperature of the fuel cell with large active area which is a maximum temperature inside the fuel cell considering durability of membrane electrolyte. The simulation results show that the operating temperature of the fuel cell and temperature distribution inside the fuel cell can affect significantly the total net power at extreme conditions. Results also show that the parasitic losses of balance of plant component should be precisely controlled to produce the maximum system power with minimum parasitic loss of thermal management system.

경두개직류전류자극이 무릎관절 전치환술 환자의 통증 및 균형 능력에 미치는 영향 (The Effect of Transcranial Direct Current Stimulation on Pain and Balance of Total Knee Arthroplasty Patients)

  • 이재홍;민동기;이상재
    • 대한정형도수물리치료학회지
    • /
    • 제28권3호
    • /
    • pp.79-87
    • /
    • 2022
  • Background: The purpose of this study was to examine the effect of transcranial direct current stimulation (tDCS) on the pain and balance of patients who receive total knee arthroplasty (TKA). Methods: This study subjects were 24 patients in Hospital T, located in Daegu, South Korea who received TKA after being diagnosed with degenerative arthritis. The subjects were randomly divided into and experimental group and a control group, with each group including 12 patients. Both group received superfical thermal therapy, interferential current therapy (ICT), and continue passive motion (CPM), which are conventional knee therapy on the knee joint. The experimental group received the tDCS treatment three times a week for three weeks, from October 1st to October 20th. The visual analogue scale and Wii Balance Board system were used to measure the pain and balancing ability, respectively, of both groups. In the statistical result analysis, to compare about pre and post test difference in each groups was accomplished. Statistical analysis of independent t-test and paired t-test were conducted using SPSS version 23.0. Results: After three weeks of intervation, there were significantly difference in balance ability in pre and post test in the tDCS group. VAS decreased significantly in both groups(p<.05), There was a significantly difference in pain, balance ability in the tDCS group compared to the sham group. Conclusion: These results indicate that applying tDCS together with conventional knee joint therapy for TKA patients is effective in promoting the patients' recovery.

열량기준 50kW급 매체순환식 가스연소기의 개념설계 및 변수해석 (Conceptual Design of 50 kW thermal Chemical-Looping Combustor and Analysis of Variables)

  • 류호정;진경태
    • 에너지공학
    • /
    • 제12권4호
    • /
    • pp.289-301
    • /
    • 2003
  • 매체순환식 가스연소기의 개발을 위해 산화반응기와 환원반응기가 연계된 2탑 가압순환유동층 조건의 50kWth 매체순환식 가스연소기에 대해 물질수지와 에너지수지를 통한 개념설계를 수행하였다. 매체순환식 가스연소기의 물질수지를 통해 산화반응기는 상승관 형태의 고속유동층 조건으로, 환원반응기는 기포유동층 조건으로 반응기 형태를 결정하였다. 물질수지와 에너지수지에 의해 계산된 층내 고체량, 고체순환량 및 반응기 크기는 장치제작 및 실제조업에 적당한 범위의 값을 나타내었으며 산소공여입자의 반응속도는 만족할 만한 수준에 도달하는 것으로 확인되었다. 본 연구의 개념설계 결과에 의하면 매체순환식 가스연소기의 조업조건은 상용 순환유동층의 조업조건과 유사하였으며 실제공정에 적용하기에 무리가 없는 것으로 사료되었다. 본 연구에서 개발된 설계 tool을 이용하여 시스템의 용량, 조업압력, 산소공여입자 중의금속산화물의 함량, 수증기 주입량, 기체유속 및 고체층 높이 등의 변화에 따른 설계 값의 변화를 해석하였으며 이를 통해 조업조건 변화에 따른 시스템의 성능변화를 예측할 수 있었다.

모델 단순화에 의한 CFRP 복합 구조물의 유효 열전도율 추출 방법 연구 (STUDY ON A EFFECTIVE THERMAL CONDUCTIVITY OF THE CFRP COMPOSITE STRUCTURE BY A SIMPLIFIED MODEL)

  • 김동건;한국일;최준혁;이장준;김태국
    • 한국전산유체공학회지
    • /
    • 제20권4호
    • /
    • pp.63-69
    • /
    • 2015
  • The thermal balance test in vacuum chamber for satellite structures is an essential step in the process of satellite development. However, it is technically and economically difficult to fully replicate the space environment by using the vacuum chamber. To overcome these limitations, the thermal analysis through a computer simulation technique has been conducted. The CFRP composite material has attracted attention as satellite structures since it has advantages of excellent mechanical properties and light weight. However, the nonuniform nature of the thermal conductivity of the CFRP structure should be noted at the step of thermal analysis of the satellite. Two different approaches are studied for the thermal analyses; a detailed numerical modeling and a simplified model expressed by an effective thermal conductivity. In this paper, the effective thermal conductivities of the CFRP composite structures are extracted from the detailed numerical results to provide a practical thermal design data for the satellite fabricated with the CFRP composite structure. Calculation results of the surface temperature and the thermal conductivities along x, y, z directions show fairly good agreements between the detailed modeling and the simplified model for all the cases studied here.

직교류형 열교환기에 대한 엘리멘트를 이용한 열정산 방법에 관한 연구 (A Study on Cross Type Heat Exchanger Using Element Method)

  • 정형호;신흥태;김광호;이춘식
    • 설비공학논문집
    • /
    • 제3권2호
    • /
    • pp.114-122
    • /
    • 1991
  • A thermal analysis method taking into account energy balance in each elements of heat exchanger was introduced. This method has a merit in predicting the temperature field over the heat exchanger in detail. To verify this method, the results were compared with the published ones. The thermal analysis of the radiator in vehicles was also conducted and the results were compared with experimental ones. It is concluded that this method can be used in thermal analysis with relatively small error. When the velocity profile of inlet air is not uniform, the outlet temperature of cooling water is higher than that of uniform velocity profile.

  • PDF

실시간 기상상태를 고려한 가용송전용량 산정 (Assessment of Available Transfer Capability (ATC) considering Real-time Weather Conditions)

  • 김동민;배인수;김진오
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.485-491
    • /
    • 2010
  • Total Transfer Capability (TTC) should be pre-determined in order to estimate Available Transfer Capability (ATC). Typically, TTC is determined by considering three categories; voltage, stability and thermal limits. Among these, thermal limits are treated mainly in this paper on the evaluation of TTC due to the relatively short transmission line length of Korea Electric Power Corporation (KEPCO) system. This paper presents a new approach to evaluate the TTC using the Dynamic Line Rating (DLR) for the thermal limit. Since the approach includes not only traditional electrical constraints but also real-time environmental constraints, this paper obtains more cost-effective and exact results. A case study using KEPCO system confirms that the proposed method is useful for real-time operation and the planning of the electricity market.

유한요소법에 의한 초고압 OF 케이블 접속재의 주도해석에 관한 연구 (Study on the Thermal Analysis of Extra-High Voltage OF Cable Accessories using Finite Element Method)

  • 이종범;강동식;강도현;이수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.211-215
    • /
    • 1989
  • This paper presents the thermal analysis of EHV OF cable accessories using FEM. The governing equation about the temperature in the cable accessories is induced by the energy balance equation. Since the temperature distribution is a function of space and time, the weighted residual method is adopted for FEM formulation. The difference approximation is used to treat the time differential term in the element equation. Automatic mesh generation which save time and labor is introduced for the data input process. It will be expected that the following thermal analysis result will be very useful to cable accessories design.

  • PDF

Plain woven carbon/6061Al 금속복합재료의 제조와 특성분석 (Thin Plate Fabrication and Characterization of Plain Woven Carbon / 6061 Al Composites)

  • 장재준;하동호;엄문광;이상관
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.250-253
    • /
    • 2004
  • Emphasis has been placed on thin plate fabrication of plain woven carbon fabric reinforced Al matrix composites using liquid pressing process. The composite has potential applications for PDP rear plate. The process is to use the low pressure for infiltration of Al melt into plain woven carbon fabric as the Al melt is pressurized directly. The minimum pressure required for the infiltration was calculated from force balance equation, permeability measurements and compaction behavior of carbon fiber. Also, the melting temperature and the holding time have been optimized. In order to measure coefficient of thermal expansion (CTE) of the composites, the thermal strain measurement using strain gage was performed and the thermal conductivity of the composites was measured using laser flash method. The constituent materials of the composite are PAN type carbon fibers as reinforcements and 6061 Al alloys as matrices.

  • PDF

Comparison of Land Surface Temperatures from Near-surface Measurement and Satellite-based Product

  • Ryu, Jae-Hyun;Jeong, Hoejeong;Choi, Seonwoong;Lee, Yang-Won;Cho, Jaeil
    • 대한원격탐사학회지
    • /
    • 제35권4호
    • /
    • pp.609-616
    • /
    • 2019
  • Land surface temperature ($T_s$) is a critical variable for understanding the surface energy exchange between land and atmosphere. Using the data measured from micrometeorological flux towers, three types of $T_s$, obtained using a thermal-infrared radiometer (IRT), a net radiometer, and an equation for sensible heat flux, were compared. The $T_s$ estimated using the net radiometer was highly correlated with the $T_s$ obtained from the IRT. Both values acceptably fit the $T_s$ from the Terra/MODIS (Moderate Resolution Imaging Spectroradiometer)satellite. These results will enhance the measurement of land surface temperatures at various scales. Further, they are useful for understanding land surface energy partitioning to evaluate and develop land surface models and algorithms for satellite remote sensing products associated with surface thermal conditions.