• 제목/요약/키워드: Thermal Transformation

검색결과 391건 처리시간 0.028초

HF 세정후 자연 산화막의 존재가 티타늄 실리사이드 형성에 미치는 영향 (The Effect of Native Oxide on the $TiSi_{2}$ Transformation after HF Cleaning)

  • 배종욱;현영철;유현규;이정용;남기수
    • 한국재료학회지
    • /
    • 제8권5호
    • /
    • pp.464-469
    • /
    • 1998
  • HF 세정후 자연 산화막의 존재가 급속 열처리 장비를 이용, 아르곤 분위기에서 열처리할 때 티타늄 실리사이드 형성을 관찰하였다. 고분해능 단면 투과 전자 현미경 관찰 결과 기판 온도가 상온일 때 자연산화막(native oxide)이 존재함을 확인하였으며 기판 온도가 40$0^{\circ}C$일 때는 실리콘 기판과 티타늄 박막의 계면 부위에서 자연산화막, 티타늄 및 실리콘이 혼합된 비정질층이 존재함을 확인하였다. 티타늄을 증착하는 동안 기판 온도를 40$0^{\circ}C$로 유지했을 때는 C54~$TiSi_2$상이 형성되는데 요구되는 급속 열처리(Rapid Thermal Annealing : RTA)온도가 기판 온도를 상오느로 유지 했을 때보다 $100^{\circ}C$정도 감소함을 확인하였다. 이 같은 결과는 산소불순물을 함유한 비정질 층이 핵생성 자리를 제공하여 이 상의 형성이 촉진된다는 사실을 말한다. 기판온도 $400^{\circ}C$에서 형성된 티타늄 실리사이드막의 경우 비저항 $\mu$$\Omega$cm임을 확인하였다.

  • PDF

Synthesis and characterization of powders in the La-Al-Si-O system

  • Kyoung Jin Kim;Kwang Suk Joo;Kun Chul Shin;Keun Ho Auh;Kyo Seon Kim
    • 한국결정성장학회지
    • /
    • 제9권5호
    • /
    • pp.475-479
    • /
    • 1999
  • Langasite ($La_{3}Ga_{5}SiO_{14}$) was found to have wide application as a promising piezoelectric material. It has high thermal stability of the frequency and large electromechanical coupling factor. For the further development of new compounds with langasite type structure, powders in the La-Al-Si-O system were synthesized by a modified Pechini process. The evolution of the crystalline phase during calcination was studied using TG-DTA, XRD and TEM for the precursor powders. Decomposition proceeded via dehydration and removal of excess solvents at low temperatures ($T<500^{\circ}C$), followed by the crystallization of lanthanum aluminum silicate ($T>800^{\circ}C$) and phase transformation to $LaAlO_{3}$ phase ($T>1200^{\circ}C$). Transmission electron microscopy (TEM) of the calcined powders showed diffuse hollow rings corresponding to an amorphous phase at $800^{\circ}C$ and clear diffraction patterns corresponding to a crystalline phase from the P321 space group ($T<1200^{\circ}C$) and the R3m ($T<1200^{\circ}C$).

  • PDF

고온용 Nitinol 형상기억합금의 열적/동역학적 특성평가 (Thermo-dynamic Characteristics Of High Temperature Nitinol Shape Memory Alloy)

  • 차수영;박상언;조채룡;박종권;정세영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.441-445
    • /
    • 2005
  • In the resent years, as the research and the development of micro and precision machinery become active, the interest of micro actuators using SMA(Shape Memory Alloy) has been increased. But, no detailed researches between the thermo-dynamic property in Nitinol alloy have been done yet. In this study, the thermal property of high temperature Nitinol shape memory alloy were evaluated using differential scanning calorimeter(DSC). The structure property was investigated using X-ray diffraction(XRD). A dynamic mechanical analyzer(DMA) with three point bending mode was used to study storage and loss modulus of shape memory alloy according to the thirteen frequencies in the temperature range between 30 and $200^{\circ}C$. The effects of the temperature heating/cooling rate, the frequency on the damping capacity have been systematically investigated. Such a frequency and temperature changes also influenced significantly to the damping behavior of the shape memory alloy. It was also found that Nitinol exhibited high damping capacity during phase transformation.

  • PDF

2차원 양자 역학적 해석에 의한 고속 통신용 $Al_{x}Gal{-x}As/Ga_{x}In1$_{-x}$As/GaAs HEMT 소자의 전자 농도 및 전위분포 계산 (Calculation of Electron concentration and Electrostatic potential profile for $Al_{x}Gal{-x}As/Ga_{x}In1$_{-x}$As/GaAs HEMT device by 2-Dimensional Quantum Mechanical analysis))

  • 송영진;황호정
    • 전자공학회논문지A
    • /
    • 제30A권3호
    • /
    • pp.76-87
    • /
    • 1993
  • We present a self-consistent, 2-dimensional solution of the Poisson and Sch rodinger equation based on the finite difference method with a nonuniform mesh size for a AlGaAs/GaInAs/GaAs HEMT devide. During the interative self-consistent calculation, however, we calculate Schrodinger equation only a some region of device, not a fully region in order to save the moemory and the speed-up of computation, and then use the approximated data for the other region using by a interpolation method with a given values. Also we adopt the proper matrix transformation method that allows preservation of the symmetric, form of the discretized Schrodinger equation, even with the use of a nonumiform mesh size, therefor, can reduce the computation time. We calculate the wavefunction, eigenstates and the electron concentration uat channel layer nder the thermal equilibrium and the biased conditions, respectively. Also,these parameters are used to solve 2-dimensional tdistribution of potential in he entire region of device. It is proved that the method is very efficient in finding eigenstages extending over relatively large spatial area without loss of accuracy. So, it can be used rather easily in any sarbitrary modulation doped utucture.

  • PDF

상변화물질의 대류유동 및 열전달 현상에 관한 연구 (Study of Convective Flow and Heat Transfer Phenomena in the Phase Change Material)

  • 손상석;이채문;이재헌;임장순
    • 태양에너지
    • /
    • 제6권2호
    • /
    • pp.43-53
    • /
    • 1986
  • The objective of this study is to report on the characterics of convective flow and heat transfer during metling process in order to provide design information for thermal energy storage systems which use phase change material. In present study, flow and heat transfer characteristics of the Phase Change Material in the Open Top Model (O.T.M) and in the Closed Top Model (C.T.M) were studied numerically by the control volume formulation using the algebraic non-orthogonal coordinate transformation. For the calculation procedure, the physical properties of fluid are assumed to be constant except density which is linely dependent on temperature in the bouyancy term of momentum equations. At start of melting process, the thickness of melting layer is assumed from the Stefan Problem assumption. The heat transfer results of Open Top Model and Closed Top Model are compared with the parameters of Grashof number and aspect ratio. It was found that heat transfer phenomena in melted region was greatly affected by buoyancy-driven natural convection and the melting distance of Open Top Model at the upper region is greater than that of Closed Top Model.

  • PDF

Gel-Casting 및 마이크로파 기상반응소결에 의한 질화규소 세라믹 제조에 대한 연구(II) : 마이크로파에 의한 실리콘의 질화반응 및 질화규소의 소결 (Fabrication of Silicon Nitride Ceramics by Gel-Casting and Microwave Gas Phase Reaction Sintering(II) : Microwave Nitridation of Silicon and Microwave Sintering of Silicon Nitride)

  • 배강;우상국;한인섭;서두원
    • 한국세라믹학회지
    • /
    • 제48권5호
    • /
    • pp.354-359
    • /
    • 2011
  • Silicon nitride ceramics were prepared by microwave gas phase reaction sintering. By this method higher density specimens were obtained for short time and at low temperature, compared than ones by conventional pressureless sintering, even though sintering behaviors showed same trend, the relative density of sintered body inverse-exponentially increases with sintering temperature and/or holding time. And grain size of ${\beta}$-phase of the microwave sintered body is bigger than one of the conventional pressureless sintered one. Also they showed good bending strengths and thermal shock resistances.

분말 소화약제가 흡착된 제올라이트의 소화 특성 (Extinguishing Characteristics of Zeolite adsorbed Dry Chemical Powder)

  • 신창섭;박호준
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.59-63
    • /
    • 2012
  • The use of dry chemical powder has been increased as it can be stored for a long period and sustain in stable condition compared to gas or liquid phase extinguishing agents. A new type of dry chemical powder using Zeolite was produced in the research. Chemical powder was adsorbed into Zeolite 13X, a porous material appearing negative catalytic effect, to create extinguishing powder obtaining core shell structure and measured physical properties and run a small scale fire extinguishment. SEM, XRD, TA analysis was also executed, and extinguishing characteristics were measured by fire extinguishing experiment on oil pool fire. The experiment showed that the average particle size of Zeolite 13X was equivalent, indicating about $3{\pm}1{\mu}m$ and thermal analysis result illustrated that Zeolite 13X showed exothermic reaction peaks at $900^{\circ}C$ due to solid-state transformation. Extinguishing characteristics on oil fire of $NaHCO_3$/Zeolite 13X and $NH_4H_2PO_4$/Zeolite were improved, influenced by adsorbed extinguishing powders on Zeolite 13X and Zeolite 13X that contains high phase transition temperature.

FUNDAMENTAL STUDY ON THE RECOVERY AND REMOVAL OF WHITE PHOSPHORUS FROM PHOSPHORUS SLUDGE

  • Jung, Joon-Oh
    • Environmental Engineering Research
    • /
    • 제10권1호
    • /
    • pp.38-44
    • /
    • 2005
  • Electro-thermal production of white phosphorus(WP, P4) generates substantial amount of highly toxic phossy water and sludges. Because of their high phosphorus contents and lack of reliable processing technology, large tonnages of these hazardous wastes have accumulated from current and past operations in the United States. In this study, two different methods for treatment of phosphorus sludge were investigated. These were bulk removal of WP by physical separation(froth flotation) and transformation of WP to oxyphosphorus compounds by air oxidation in the sludge medium. Kerosene, among other collectors, resulted in selective flotation of WP from the associated mineral gangue. Solvent action of kerosene occurring on the WP surface(by rendering WP particles hydrophobic) might produce the high selectivity of WP. The WP recovery in the froth was 79.3% from a sludge assaying 34.2% of WP. In the oxidation study, air gas was dispersed in the sludge medium by the rapid rotation of the impeller blades. The high level of sludge agitation intensity caused a fast completion of the oxidation reactions and it resulted in the high percentage conversion of WP to PO4-3 with PO3-3 making up almost all portion of oxyphosphorus compounds. The WP analysis on the treated sludge showed that supernatant solution and solid residue contained an average of 4.2 μg/L and 143 ppm respectively from the sludge containing about 26 g of WP. Further investigation will be required on operational factors to better understand the processes and achieve an optimum condition.

비정질 $Ge_2Sb_2Te_5$ 박막의 상변화에 따른 전기적 특성 연구 (The electrical properties and phase transition characteristics of amorphous $Ge_2Sb_2Te_5$ thin film)

  • 양성준;이재민;신경;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.210-213
    • /
    • 2004
  • The phase transition between amorphous and crystalline states in chalcogenide semiconductor films can controlled by electric pulses or pulsed laser beam; hence some chalcogenide semiconductor films can be applied to electrically write/erase nonvolatile memory devices, where the low conductive amorphous state and the high conductive crystalline state are assigned to binary states. Memory switching in chalcogenides is mostly a thermal process, which involves phase transformation from amorphous to crystalline state. The nonvolatile memory cells are composed of a simple sandwich (metal/chalcogenide/metal). It was formed that the threshold voltage depends on thickness, electrode distance, annealing time and temperature, respectively.

  • PDF

Transient thermoelastic analysis of carbon/carbon composite multidisc brake using finite element method

  • Ghashochi-Bargh, Hadi;Goodarzi, Mohammad-Saeed;Karimi, Masoud;Salamat-Talab, Mazaher
    • Advances in aircraft and spacecraft science
    • /
    • 제7권2호
    • /
    • pp.135-149
    • /
    • 2020
  • In the current paper, a generalization of the results of Zhao et al. (2008) on a new design of C/C composite multidisc brake system is presented. The purpose of this paper is to study the effect of thermal sensitivity of Carbon/Carbon (C/C) composite material on the temperature distributions, deformation, and stress during braking. In this regard, a transient temperature-displacement coupled analysis for C/C composite brake discs with frictional heat generation under simulated operating conditions is performed. An axisymmetric model for brake system is used for the finite element analysis according to the theory of energy transformation and transportation. The transient temperature distributions on the friction surfaces, deformation, and stress are obtained. To check the validity, the results are corroborated with other solutions available in the literature, wherever possible. The current study could be used as a guide in the initial design of a high performance multidisc brake system.