• Title/Summary/Keyword: Thermal Plume Interaction

Search Result 5, Processing Time 0.021 seconds

Numerical Prediction of the Base Heating due to Rocket Engine Clustering (로켓엔진 병렬화에 의한 저부가열의 수치적 예측)

  • Kim Seong Lyong;Kim Insun
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.18-25
    • /
    • 2004
  • Multi plume effects on the base heating have been Investigated with a CFD program. As the flight altitude increases, the plume expansion angle increases regardless of the single or clustered engine. The plume interaction of the clustered engine makes a high temperature thermal shear in the center of four plumes. At low altitude, the high temperature shear flow stays in the center of plumes, but it increases up to engine base with the increasing altitude. At high altitude, the flow from plume to base and the flow from base into outer free stream are supersonic, which transfers the high heat in the center of plumes to the base region. The radiative heat of the clustered engine varies from 220 kW/m² to 469 kW/m² with increasing altitude while those of the single engine are 10 kW/m² and 43.7 kW/m². And the base temperature of the clustered engine varies from 985K to 1223K, and those of the single engine are 483K and 726K. This big radiative heat of clustered engine can be explained by the active high temperature base flow and strong plume interactions.

Mixed convection from two isothermal, vertical, parallel plates (등온 수직 평판에서의 혼합대류 열전달)

  • 박문길;이재신;양성환;권순석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1645-1651
    • /
    • 1990
  • The steady laminar mixed convection from two finite vertical parallel plates has been studied by numerical procedure. The governing equations are solved by the finite difference method and point successive over relaxation scheme at R3=100-1000, Gr=0-10$^{6}$ , Pr=0.71 and dimensionless plate spacing b/$\ell$=0.05-0.1. The plume interaction caused by the thermal interference of two plates is observed. As Reynolds numbers are increased, optimum plate spacings are moved to narrow spacings at the same Grashof number, and as Grashof numbers are increased, to wide spacings at the same Reynolds number.

Natural Convection Heat Transfer Past an Outer Rectangular Corner (외부 직각모서리 부근에서의 자연대류 열전달)

  • 신순철;장근식;김승수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.598-605
    • /
    • 1985
  • Laminar natural convection heat transfer past an outer rectangular corner was experimentally investigated by using Mach-Zehnder interferometer. The present geometry represents the case when the plume from a vertical flat plate and that from a horizontal one merge into a single plume. the temperature distribution and the local heat flux were measured in the range of Grashof number 8 * 10$^{4}$$r_{LH}$ <1.25 * 10$^{6}$ . The effect of the geometric aspect ratio was also considered. Correlation for the average Nusselt number vs. Grashof number was obtained by using a newly determined characteristic length. To determine the interaction of the plumes, the present results were compared with the similarity solutions available from the isolated vertical and isolated horizontal flat plates.

Mixed Convection Heat Transfer from Vertically Misaligned Isothermal plates (수직으로 엇갈린 등온평판에서의 혼합대류 열전도)

  • 권순석;김상영;박순업
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.52-61
    • /
    • 1992
  • The steady laminar mixed convection from vertically misaligned, isothermal plastes has been studied by numerical procedure. The governing equations are solved by the finite difference method using successive using successive over relaxation scheme at Re=100-800, $Gr=10^3-10^6$, Pr=0.71 and dimensionless plate spacings b/L=0.1-1.0. The plume interaction caused by the thermal interference of twoplates is observed. As Reynolds numbers increase, the optimum plate spacings are moved to narrow spacings at the same Grashof number and as Grashof numbers increase, to wide spacings at the same Reynolds number.

  • PDF

Thermal Numerical Simulation on Fire Suppression Characteristics through Mobile Mist Spray Nozzles (이동식 미분무수 노즐의 소화 특성에 대한 수치 시뮬레이션)

  • Bae, K.Y.;Chung, H.T.;Kim, H.B.;Jung, I.S.;Kim, C.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.25-33
    • /
    • 2009
  • In the present study, the numerical investigation has been carried out to see the effects of water mist sprays on the fire suppression mechanism. The special-purposed program named as FDS was used to simulate the interaction of fire plume and water mists. This program solves the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The computational domain was composed of a rectangular space dimensioned as $L{\times}W{\times}H=4.0{\times}4.0{\times}2.5\;m^3$ with a mist-injecting nozzle installed 1.0 m high from the fire pool. In this paper, two types of nozzles were chosen to compare the performance of the fire suppression. Numerical results showed that the nozzle, type A, with more orifices having smaller diameters had poorer performance than the other one, type B because the flow injected through side holes deteriorated the primary flow. The fire-extinguishing time of type A was 2.6 times bigger than that of type B.

  • PDF