• Title/Summary/Keyword: Thermal Plasma

Search Result 1,183, Processing Time 0.028 seconds

Thermal characteristics variation of PDP in compliance with dielectric loss

  • Lee, Tae-Ho;Jung, Jae-Chul;Lee, Sang-Kuk;Kim, Joong-Kyun;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.265-268
    • /
    • 2009
  • The discharge condition of Plasma display panel(PDP) changes as the display time increases. Imaginary part of permittivity of dielectric material which is related to dielectric loss has been often neglected because of relatively small value compare to that of the real part. The thermal characteristics of PDPs with two different dielectrics has been studied and compared.

  • PDF

Effect of Non-thermal Dielectric Barrier Discharge Plasma by Air Volume against Mycobacterium Tuberculosis (비열 유전체장벽방전 플라즈마 발생기의 풍량에 따른 결핵균 성장억제 효능)

  • Son, Eun-Soon;Kim, Yonghee;Paik, Namwon;Lee, Ilyong;Kim, Eunhwa;Park, Hae-Ryoung;Lee, Jongseok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.414-419
    • /
    • 2019
  • Objectives: The objective of this study was to evaluate the inhibitory effect of non-thermal dielectric barrier discharge (DBD) plasma by air volume against Mycobacterium tuberculosis (MTB). Methods: Plasma generators (TB-300, Shinyoung Airtec, Seongnam-si, Korea) were operated in a 2A type biosafety cabinet. The plasma generator was set to a wind flow rate of 14 ($80m^3/h$), 18 ($110m^3/h$), and 22 ($150m^3/h$), and exposure times were set to 0 hours, 3 hours, 6 hours, 9 hours, and 24 hours. Results: The inhibitory effects of plasma at air volume 14 with prolonged exposure time of three hours was 20%, 64% at six hours, 82.3% at nine hours, and 100% after 24 hours exposure. With air volume of 18, the inhibitory effects upon plasma exposure were 36% for three hours, and 100% from 24 hours. Greater air volume resulted in greater inhibition of tuberculosis bacterial growth. In particular, the maximum inhibitory effect (100%) was shown in air volume of 22 ($150m^3/h$) after three hours of plasma exposure. Conclusions: The results showed the correlating inhibitory effects of plasma on the growth of MTB in combination with increasing plasma exposure time and air volume.

Fabrication and Characteristic of ZrO2-8%Y2O3 Powder for Plasma Spray Coating Manufactured by Mechanical Mixing Method (기계적 혼합에 의한 플라즈마 용사용 ZrO2-Y2O3 분말의 제조 및 특성)

  • Han, Jin-Won;Kwak, Chan-Won;Woo, Kee-Do
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.357-362
    • /
    • 2014
  • Thermal barrier coatings(TBCs) are being applied in many industrial fields such as thermal power generation, aviation and seasonal fields. $ZrO_2-Y_2O_3$(8%) thermal spray coating powders are commercially used as thermal-barrier coating materials to protect against oxidation and corrosion of heat-resistant alloys at elevated temperatures. Currently, $ZrO_2-Y_2O_3$(8%) thermal-spray powder is made using the industrial co-precipitation process, which is very complex and requires a lot of time. In this study, orthorhombic $ZrO_2$ and $Y_2O_3$ powders were fabricated by mechanical mixing, which is more economical than the co-precipitation process. A tetragonal, yttria-stabilized zirconia(YSZ) coating-layer was produced by plasma spraying, using orthorhombic $ZrO_2-Y_2O_3$(8%) powder. Our experimental results indicate that $ZrO_2-Y_2O_3$(8%) mixed powder can be used economically in industry because it is no longer necessary to make this powder by liquid and gas-phase methods.

Enhanced thermal conductivity of spark plasma-sintered thorium dioxide-silicon carbide composite fuel pellets

  • Linu Malakkal;Anil Prasad;Jayangani Ranasinghe;Ericmoore Jossou;Lukas Bichler;Jerzy Szpunar
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3725-3731
    • /
    • 2023
  • Thorium dioxide (ThO2)-silicon carbide (SiC) composite fuel pellets were fabricated via the spark plasma-sintering (SPS) method to investigate the role of the addition of SiC in enhancing the thermal conductivity of ThO2 fuel. SiC particles with an average size of 1㎛ in 10 and 15 vol% were used to manufacture the composite pellets. The changes in the composites' densification, microstructure and thermal conductivity were explored by comparing them with pure ThO2 pellets. The structural and microstructural characterization of the composite pellets has revealed that SPS could manufacture high-quality composite pellets without having any reaction products or intermetallic. The density measurement by the Archimedes principles and the grain size from the electron back-scattered diffraction (EBSD) analysis has indicated that the composites have higher densities and smaller grain sizes than the pellets without SiC addition. Finally, thermal conductivity as a function of temperature has revealed that sintered ThO2-SiC composites showed an increase of up to 56% in thermal conductivity compared to pristine ThO2 pellets.

Thermal Barrier Efficiency and Endurance of Ni-Cr Coating in Liquid Rocket Engine Combustor (액체로켓엔진 연소기에 적용된 니켈-크롬 코팅의 열차폐 효율과 내구성)

  • Lee, Kwang-Jin;Lim, Byoung-Jik;Kim, Jong-Gyu;Han, Yeoung-Min;Choi, Hwan-Seok
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.138-143
    • /
    • 2009
  • Thermal barrier efficiency and endurance of coatings in liquid rocket engine combustor were evaluated for air plasma spray coating and electro/electroless plating. The result of firing tests has revealed occasional occurrence of local delamination of $ZrO_2$, NiCrAlY coating obtained by the method of air plasma spray in the region of supersonic flow and it necessitated a new coating method as a substitution. It was found that Ni-Cr coating by means of electro/electroless plating can substitute $ZrO_2$, NiCrAlY coatings of air plasma spray in terms of thermal barrier efficiency and endurance.

  • PDF

A Study on the Silicon surface and near-surface contamination by $CHF_3$/$C_2$$F_6$ RIE and its removal with thermal treatment and $O_2$ plasma exposure ($CHF_3$/$C_2$$F_6$ 반응성이온 건식식각에 의한 실리콘 표면의 오염 및 제거에 관한 연구)

  • 권광호;박형호;이수민;곽병화;김보우;권오준;성영권
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.1
    • /
    • pp.31-43
    • /
    • 1993
  • Thermal behavior and $O_{2}$ plasma effects on residue and penetrated impurities formed by reactive ion etching (RIE) in CHF$_{3}$/C$_{2}$F$_{6}$ have been investigated using X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) techniques. Decomposition of polymer residue film begins between 200-300.deg. C, and above 400.deg. C carbon compound as graphite mainly forms by in-situ resistive heating. It reveals that thermal decomposition of residue can be completed by rapid thermal anneal above 800.deg. C under nitrogen atmosphere and out-diffusion of penetrated impurities is observed. The residue layer has been removed with $O_{2}$ plasma exposure of etched silicon and its chemical bonding states have been changed into F-O, C-O etc.. And $O_{2}$ plasma exposure results in the decrease of penetrated impurities.

  • PDF

The Experimental Study on the Removal of Diesel Engine Pollutant Emissions Using DC Non-Thermal-Plasma(NTP) (DC 저온플라즈마를 이용한 디젤엔진 유해 배기가스 저감에 관한 실험적 연구)

  • Chae, Jae-Ou;Hwang, Jae-Won;Jung, Jee-Yong;Han, Jung-Hee;Hwang, Hwa-Ja;Kim, Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.35-42
    • /
    • 2001
  • The diesel engine exhaust gas is know as one of the causes to produce photochemical smog, which causes damage on environmental. However, due to the high thermal efficiency and low carbon dioxide emission, the usage of a diesel engine is prevailed. In this study, the DC non-thermal plasma technology used to the particulate matter (PM) aftertreatment. The exhaust gas characteristics and energy density were investigated on the dynamometer test bed and chassis dynamometer with CVS-75 mode in a passenger diesel car. It was reported that the smoke removal efficiency has around the 70% in the dynamometer test with 80W energy consumption and the PM removal efficiency has the 68% in the real car test. The NOx also reduced the 20% according to electrode type respectively. Considering these results, plasma technology is one of the ways to simultaneously removing method the particulate matter (PM) and NOx.

  • PDF

Oxidative stress status and reproductive performance of sows during gestation and lactation under different thermal environments

  • Zhao, Yan;Kim, Sung Woo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.722-731
    • /
    • 2020
  • Objective: Two experiments were conducted using 28 healthy multiparous sows to evaluate the oxidative stress status and reproductive performance of sows during gestation and lactation under different thermal environments. Methods: Fourteen multiparous sows were used in Exp. 1 under a high thermal environment, and the other 14 multiparous sows were used in Exp. 2 under a moderate thermal environment. In both experiments, reproductive performances of sows were recorded. Plasma samples were collected on d 35, 60, 90, and 109 of gestation, and d 1 and 18 of lactation for malondialdehyde, protein carbonyls, 8-hydroxy-deoxyguanosine, immunoglobulin g (IgG), and IgM analysis. Results: For sows in Exp. 1, plasma malondialdehyde concentration on d 109 of gestation tended to be greater (p<0.05) than it on d 18 of lactation. Plasma concentration of protein carbonyl on d 109 of gestation was the greatest (p<0.05) compared with all the other days. Plasma concentrations of 8-hydroxy-deoxyguanosine on d 109 of gestation was greater (p<0.05) than d 18 of lactation in Exp. 1. For sows in Exp. 2, there was no difference of malondialdehyde and protein carbonyl concentration during gestation and lactation. In both Exp. 1 and 2, litter size and litter weight were found to be negatively correlated with oxidative stress indicators. Conclusion: Sows under a high thermal environment had increased oxidative stress during late gestation indicating that increased oxidative damage to lipid, protein, and DNA could be one of the contributing factors for reduced reproductive performance of sows in this environment. This study indicates the importance of providing a moderate thermal environment to gestating and lactating sows to minimize the increase of oxidative stress during late gestation which can impair reproductive outcomes.

Phase Formation and Thermal Diffusivity of Thermal Barrier Coatings of La2Zr2O7, (La0.5Gd0.5)2Zr2O7, Gd2Zr2O7 Fabricated by Suspension Plasma Spray (서스펜션 플라즈마 용사법으로 제조한 La2Zr2O7, (La0.5Gd0.5)2Zr2O7, Gd2Zr2O7 열차폐코팅의 상형성과 열전도 특성)

  • Kim, Sun-Joo;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.604-611
    • /
    • 2016
  • In order to comply with demand for high efficient gas turbines operating at higher temperatures, considerable amounts of research efforts have been performed with searching for the next-generation thermal barrier coatings (TBCs) with respect to coating materials as well as processing methods. In this study, thermal barrier coatings in the $(La_{1-x}Gd_x)_2Zr_2O_7$ system, which is one of the most versatile materials replacing yttria-stabilized zirconia (YSZ), are fabricated by suspension plasma spray with suspension made of synthesized powders via solidstate reaction. Dense, $100{\sim}400{\mu}m$ thick coatings of fluorite-phase zirconate with moderate amount of segmented microstructures are obtained by using suspension plasma spray. Phase formation and thermal diffusivity are characterized with coating compositions. The feasibility of $(La_{1-x}Gd_x)_2Zr_2O_7$ coatings for TBC applications is also discussed.

Recent Advance in High Pressure Induction Plasma Source

  • Sakuta, T.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.395-402
    • /
    • 2001
  • An induction thermal plasma system have been newly designed for advanced operation with a pulse modulated mode to control the plasma power in time domain and to create non-equilibrium effects such as fast quenching of the plasma to produce new functional materials in high rate. The system consists of MOSFET power supply with a maximum power of 50 kW with a frequency of 460 kHz, an induction plasma torch with a 10-turns coil of 80 mm diameter and 150 mm length and a vacuum chamber. The pulse modulated plasma was successfully generated at a plasma power of 30 kW and a high pressure of 100 kPa, with taking the on and off time as 10 ms, respectively. Measurements were carried out on the time-dependent spectral lines emitted from Ar species. The dynamic behavior of plasma temperature in a pulse cycle was estimated by the Boltzmann plot and the excitation temperature of Ar atom was found to be changed periodically from around 0.5 to 1.7 eV during the cycle. Two application regions of the induction thermal plasma newly generated were introduced to material processing with high rate synthesis based on non equilibrium effects, and to the finding of new arc quenching gases coming necessary for power circuit breaker, which is friendly with earth circumstance alternative to SF6 gas.

  • PDF