• 제목/요약/키워드: Thermal Performance

검색결과 5,415건 처리시간 0.039초

Beer-Lambert 법칙을 적용한 레이저 열원 프로파일 모델링 및 레이저무기용 반사경의 열변형 해석을 통한 구조-열-광학 성능 연구 (A Study on Structural-Thermal-Optical Performance through Laser Heat Source Profile Modeling Using Beer-Lambert's Law and Thermal Deformation Analysis of the Mirror for Laser Weapon System)

  • 홍대기
    • 항공우주시스템공학회지
    • /
    • 제17권4호
    • /
    • pp.18-27
    • /
    • 2023
  • 본 논문에서는 열해석의 하중조건으로 레이저 열원을 설정하여 반사경의 구조-열-광학 성능 분석을 수행하였다. 레이저 열원 모델은 가우시안 빔을 바탕으로 반투명한 소재를 고려한 Beer-Lambert 법칙을 적용하여 하중조건으로 선정하였으며, 반사경만의 성능 분석을 위하여 기구부는 고려하지 않았다. 열변형해석을 수행하여 반사경 표면의 온도 변화로 인한 열응력과 열변형 데이터를 얻었다. 열변형에 의한 반사경 표면의 변위 데이터를 Zernike 다항식에 피팅하여 파면오차를 계산하였으며, 이를 통해 고에너지 레이저가 반사경으로 입사될 때 반사경의 광학 성능을 예측할 수 있었다.

Progresses on the Optimal Processing and Properties of Highly Porous Rare Earth Silicate Thermal Insulators

  • Wu, Zhen;Sun, Luchao;Wang, Jingyang
    • 한국세라믹학회지
    • /
    • 제55권6호
    • /
    • pp.527-555
    • /
    • 2018
  • High-temperature thermal insulation materials challenge extensive oxide candidates such as porus $SiO_2$, $Al_2O_3$, yttria-stabilized zirconia, and mullite, due to the needs of good mechanical, thermal, and chemical reliabilities at high temperatures simultaneously. Recently, porous rare earth (RE) silicates have been revealed to be excellent thermal insulators in harsh environments. These materials display attractive properties, including high porosity, moderately high compressive strength, low processing shrinkage (near-net-shaping), and very low thermal conductivity. The current critical challenge is to balance the excellent thermal insulation property (extremely high porosity) with their good mechanical properties, especially at high temperatures. Herein, we review the recent developments in processing techniques to achieve extremely high porosity and multiscale strengthening strategy, including solid solution strengthening and fiber reinforcement methods, for enhancing the mechanical properties of porous RE silicate ceramics. Highly porous RE silicates are highlighted as emerging high-temperature thermal insulators for extreme environments.

CNT 열전달 물질에 의한 50W LED의 방열 성능평가 (Performance Evaluation of Heat Radiant for 50W LED by the CNT Thermal Interface Material)

  • 조영태;이충호
    • 한국기계가공학회지
    • /
    • 제13권6호
    • /
    • pp.23-29
    • /
    • 2014
  • In this study, cooling and heat-transfer tests are performed to compare and evaluate the thermal conductivity in a prepared CNT TIM (thermal interface material). A polymerized CNT heat-transfer resin and commercial thermal grease (Shinetsu G-747) were applied for a comparison test in both cases. Cooling experiments with an aluminum foil specimen were performed in order to measure the temperature distribution using an infrared camera, and in heat radiation experiments, performance testing of the thermal conductivity was conducted using high-power LEDs. Carbon resin with the polymerization of graphite and carbon black, and CNT-polymerized CNT resin with graphite and carbon black were tested and compared with using G-747. It was found that the cooling performance and the heat transfer ability in both the carbon resin and the CNT-polymerized CNT resin were greater than those of G-747 because the temperature by 5. $0^{\circ}C$ in both cases appeared lower than that of the G-747.

서스펜션 진공 플라즈마 용사법을 통한 YSZ 코팅의 형성 (Formation of YSZ Coatings Deposited by Suspension Vacuum Plasma Spraying)

  • 유연우;변응선
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.460-464
    • /
    • 2017
  • As increasing thermal efficiency of the gas turbine, the performance improvement of thermal barrier coatings is also becoming important. Ytrria stabilized zirconia(YSZ) is the most popular materials for ceramic top coating because of its low thermal conductivity. In order to enhance the performance of thermal barrier coatings for hot sections in the gas turbine, suspension plasma spraying was developed in order to feed nano-sized powders. YSZ coatings formed by suspension plasma spraying showed better performance than YSZ coatings due to its exclusive microstructure. In this research, two YSZ coatings were deposited by suspension vacuum plasma spraying at 400 mbar and 250 mbar. Microstructures of YSZ coatings were analyzed by scanning electron image(SEM) on each spraying conditions, respectively. Crystalline structure transformation was not detected by X-ray diffraction. Thermal conductivity of suspension vacuum plasma sprayed YSZ coatings were measured by laser flash analysis. Thermal conductivity of suspension vacuum plasma sprayed YSZ coatings containing horizontally oriented nano-sized pores and vertical cracks showed $0.6-1.0W/m{\cdot}K$, similar to thermal conductivity of YSZ coatings formed by atmospheric plasma spraying.

TRNSYS를 이용한 Borehole 방식 태양열 계간축열 시스템의 성능에 관한 연구 (A Study on Performance of Seasonal Borehole Thermal Energy Storage System Using TRNSYS)

  • 박상미;서태범
    • 한국태양에너지학회 논문집
    • /
    • 제38권5호
    • /
    • pp.37-47
    • /
    • 2018
  • The heating performance of a solar thermal seasonal storage system applied to a glass greenhouse was analyzed numerically. For this study, the gardening 16th zucchini greenhouse of Jeollanam-do agricultural research & extension services was selected. And, the heating load of the glass greenhouse selected was 576 GJ. BTES (Borehole Thermal Energy Storage) was considered as a seasonal storage, which is relatively economical. The TRNSYS was used to predict and analyze the dynamic performance of the solar thermal system. Numerical simulation was performed by modeling the solar thermal seasonal storage system consisting of flat plate solar collector, BTES system, short-term storage tank, boiler, heat exchanger, pump, controller. As a result of the analysis, the energy of 928 GJ from the flat plate solar collector was stored into BTES system and 393 GJ of energy from BTES system was extracted during heating period, so that it was confirmed that the thermal efficiency of BTES system was 42% in 5th year. Also since the heat supplied from the auxiliary boiler was 87 GJ in 5th year, the total annual heating demand was confirmed to be mostly satisfied by the proposed system.

열 경계 조건이 다른 틸팅패드저널베어링의 성능 (Performance of Tilting Pad Journal Bearings with Different Thermal Boundary Conditions)

  • 서준호;황철호
    • Tribology and Lubricants
    • /
    • 제37권1호
    • /
    • pp.14-24
    • /
    • 2021
  • This study shows the effect of the thermal boundary condition around the tilting pad journal bearing on the static and dynamic characteristics of the bearing through a high-precision numerical model. In many cases, it is very difficult to predict or measure the exact thermal boundary conditions around bearings at the operating site of a turbomachine, not even in a laboratory. The purpose of this study is not to predict the thermal boundary conditions around the bearing, but to find out how the performance of the bearing changes under different thermal boundary conditions. Lubricating oil, bearing pads and shafts were modeled in three dimensions using the finite element method, and the heat transfer between these three elements and the resulting thermal deformation were considered. The Generalized Reynolds equation and three-dimensional energy equation that can take into account the viscosity change in the direction of the film thickness are connected and analyzed by the relationship between viscosity and temperature. The numerical model was written in in-house code using MATLAB, and a parallel processing algorithm was used to improve the analysis speed. Constant temperature and convection temperature conditions are used as the thermal boundary conditions. Notably, the conditions around the bearing pad, rather than the temperature boundary conditions around the shaft, have a greater influence on the performance changes of the bearing.

열 사이클에 따른 고체산화물 연료전지의 기계적 및 전기적 특성 (Mechanical and Electrical Performance of Anode-Supported Solid Oxide Fuel Cells during Thermal Cyclic Operation)

  • 양수용;박재근;이태희;유정대;유영성;박진우
    • 한국세라믹학회지
    • /
    • 제43권12호
    • /
    • pp.775-780
    • /
    • 2006
  • Mechanical and electrical performance of anode-supported SOFC single cells were analyzed after thermal cyclic operation. The experiments of thermal cyclic cell-operation were carried out four times and performance of each cell was measured at different temperatures of 650, 700, and $750^{\circ}C$, respectively. As increasing the number of thermal cycle test, single cells showed poor I-V characteristics and lower 4-point bending strength. The anode polarization was also measured by AC-impedance analysis. The observation of the microstructure of the anodes in single cells proved that the average particle size of Ni decreased and the porosity of anode increased. It is thought that the thermal cycle caused the degradation of performance of single cells by reducing the density of three-phase boundary region.

금속단열재 박판의 설계인자별 단열성능 영향 연구 (Studies on Insulation Effect Related with Thin-Plate Design Factors for Reflective Metal Insulation(RMI) of Nuclear Power Plant)

  • 어민훈;이성명;장계환
    • 설비공학논문집
    • /
    • 제28권9호
    • /
    • pp.350-354
    • /
    • 2016
  • Although fibrous insulations are generally used with resistive insulation type, metallic insulation is proper matter to satisfy low head-loss and equipment life when considering the specific condition, especially for Nuclear power plant. Common insulation is resistance insulation with a low thermal conductivity. but RMI is made of sheet plate with low emissivity and closed air space. Thermal radiation is blocked by stainless steel with low emissivity. Thermal conductivity and thermal convection are blocked by closed air space. This study shows the changes and effects of the heat loss according to shape and method of stacking sheet plates inserted into the insulation and analyzed the most optimized way for thermal insulation performance. The result shows that using sheet plate structure through raised and protruding shape processing was the appropriate model to optimize thermal performance. Additionally, insulating performance of RMI improved by placing the sheet plate in a high temperature region intensively.

태양열 시스템에 적용된 나선재킷형 축열조의 CFD 해석 (CFD Analysis for Spiral-Jacketed Thermal Storage Tank in Solar Heating Systems)

  • 남진현;김민철;김찬중;홍희기
    • 설비공학논문집
    • /
    • 제20권10호
    • /
    • pp.645-653
    • /
    • 2008
  • Spiral-jacketed thermal storage tanks can greatly simplify solar heating systems while maintaining the thermal performance at a similar level as conventional systems with an external heat exchanger. Proper design of the spiral-jacket flow path is essential to make the most of solar energy, and thus to maximize the thermal performance. In the present work, computational fluid dynamics (CFD) analysis was carried out for a spiral-jacketed storage tank installed in a solar heating demonstration system. The results of the CFD analysis showed a good agreement with experimentally determined thermal performance indices such as the acquired heat, collector efficiency, and mixed temperature in the storage tank. This verified CFD modelling approach can be a useful design tool in optimizing the shape of spiral-jacket flow path and the flow rate of circulating fluid for better performance.

Preliminary study on the thermal-mechanical performance of the U3Si2/Al dispersion fuel plate under normal conditions

  • Yang, Guangliang;Liao, Hailong;Ding, Tao;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3723-3740
    • /
    • 2021
  • The harsh conditions in the reactor affect the thermal and mechanical performance of the fuel plate heavily. Some in-pile behaviors, like fission-induced swelling, can cause a large deformation of fuel plate at very high burnup, which may even disturb the flow of coolant. In this research, the emphasis is put on the thermal expansion, fission-induced swelling, interaction layer (IL) growth, creep of the fuel meat, and plasticity of the cladding for the U3Si2/Al dispersion fuel plate. A detailed model of the fuel meat swelling is developed. Taking these in-pile behaviors into consideration, the three-dimensional large deformation incremental constitutive relations and stress update algorithms have been developed to study its thermal-mechanical performance under normal conditions using Abaqus. Results have shown that IL can effectively decrease the thermal conductivity of fuel meat. The high Mises stress region mainly locates at the interface between fuel meat and cladding, especially around the side edge of the interface. With irradiation time increasing, the stress in the fuel plate gets larger resulting from the growth of fuel meat swelling but then decreases under the effect of creep deformation. For the cladding, plasticity deformation does not occur within the irradiation time.