• Title/Summary/Keyword: Thermal Mass Method

Search Result 412, Processing Time 0.026 seconds

Hydrate Heat Analysis for the Determination of Optimized Thickness in Mass Concrete (매스 콘크리트의 적정 타설높이 산정을 위한 수화열 해석)

  • 신성우;이광수;유석형;김선호;황동규;박기홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.385-390
    • /
    • 2001
  • The thermal crack in mass concrete is mainly due to the difference of concrete temperature, which is generated by hydration heat of cement. As the thickness of mat foundation increases, the difference of temperature becomes bigger. The purpose of this study is to estimate the optimum placing depth. The temperature of real mat foundation was observed and the thermal analysis by Finite Element Method was executed. Finally, the crack index according to the placing depth was estimated.

  • PDF

Simplified Technique for 3-Dimensional Core T/H Model in CANDU6 Transient Simulation

  • Lim, J.C.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.113-116
    • /
    • 1995
  • Simplified approach has been adopted for the prediction of the thermal behavior of CANDU reactor core during power transients. Based on the assumption that the ratio of mass flow rate for each core channel does not vary during the transient, quasy-steady state analysis technique is applied with predicted core inlet boundary conditions(total mass flow rate and specific enthalpy). For restricted transient case, the presented method shows functionally reasonable estimation of core thermal behavior which could be implemented in the fast running reactor simulation program.

  • PDF

An Experimental Study on Cooling of Hydration Heat of Mass Concrete Structure using Pulsating Heat Pipe in Summer Season (진동형 히트 파이프를 이용한 하계 매스 콘크리트의 수화열 냉각에 관한 실험적 고찰)

  • Yang, Tae-Jin;Kim, Jeong-Hoon;Kim, Jong-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.51-57
    • /
    • 2007
  • In process of reinforced concrete (RC) box structure. the heat of hydration may cause serious thermal cracking. In order to eliminate hydration heat of mass concrete. this paper reports results of hydration heat control in mass concrete structure using the pulsating heat pipe. There were three RC box molds($1.2{\times}l.8{\times}2.4m^3$) which shows a difference as compared with each other. One was not equipped with pulsating heat pipe. The others were equipped with pulsating heat pipe. All of them were cooled with natural air convection. The pulsating heat pipe was composed of serpentine type copper pipe with 10 turns (outer diameter: 4mm. inner diameter: 2.8mm). The working fluid was R-22 and its charging ratio was 40% by volume. The conditions such as the number of turns. the length and the pitch of the pulsating heat pipe and the size of concrete structure were changed. Based on these experiments, it was confirmed that this construction method using pulsating heat pipe was effective to remove hydration heat of mass concrete structure and thus it was possible to prevent harmful thermal crack and construction Period and costs of concrete structure would be cut down.

Thermal Conductivity Measurement of Grouting Materials for Ground Heat Exchanger Borehole (지중 열교환기 보어홀 그라우팅 재료의 열전도도 측정)

  • Sohn, Byong-Hu;Shin, Hyun-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.493-500
    • /
    • 2006
  • This paper concerns the measurement of thermal conductivity of grouting materials for ground loop heat exchanger. A thermal conductivity meter, QTM-500 based on modified transient hot wire method was used to measure the thermal conductivity of neat bentonite and mixtures of bentonite and various additives. Relative to the total mixture mass, as the percent additive was increased the mixture thermal conductivity increased. For the bentonite-silica sand mixtures, the higher density of the sand particles resulted in much higher mixture thermal conductivity. The quartzite and silica sands produced the largest increases in mixture thermal conductivity, while common masonry and limestone sands produced lower thermal conductivity increases.

Thermal Ion Mass Spectrometry with Isotope Dilution Method: An application to Rare Earth Element Geochemistry (동위원소희석법을 이용한 열이온 질량분석: 희토류원소 지구화학에의 응용)

  • ;;;增田彰正
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.190-201
    • /
    • 2001
  • Isotope Dilution Mass Spectrometry(IDMS) is one of the analytical method which uses enriched isotope spikes and analyzes the abundance of element by comparison of the spectrum between spiked mass and non-spike mass. Especially, the Thermal Ion Mass Spectrometry with isotope dilution technique (in general ID-TIMS) is the most accurate method of the chemical analysis, which enables us to obtain the data better than 1% in accuracy and precision. In IDMS, enriched isotope spike is one of the most important factor in order to obtain the best data. For rare earth elements, in general, a mixture of /sup 138/La, /sup 142/Ce, /sup 145/Nd, /sup 149/Sm, /sup 151/Sm, /sup 151/Eu, /sup 157/Gd, /sup 163/Dy, /sup 167/Er, /sup 171/Yb, and /sup 176/Lu is used as composite spike. IDMS is very useful in geochronology and REE geochemistry. Especially, it is very effective in studying the “tetrad effect” of rare earth elements in natural samples.

  • PDF

Attachment of Two-Way Shape Memory Alloy onto Fabric for Mass Production of Fire Fighters' Turnout Gear (지능형 소방복의 양산화를 위한 이방향 형상기억합금 부착 방법)

  • Park, Mi-Kyung;Lee, Ji-Yeon;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.4
    • /
    • pp.382-390
    • /
    • 2012
  • This study shows the optimum attachment of Two-Way Shape Memory Alloy (TWSMA) springs onto thermal liner and its sewing method for the mass production of fire fighter's intelligent turnout gear. SMA springs were attached to the fabric by four different methods and stitched by two different shapes (square and wave). The durability of the attached springs was tested by laundering up to 50 cycles. Examined were whether the springs would remain attached to the fabric after repeated laundering, the shape memory effect and reaction of the springs, and the anti-corrosiveness of the springs. A Human-Clothing-Environment simulator evaluated thermal insulation according to attachment methods, air layer volume, and stitch types. The findings showed that silicon attached springs remained intact after repeated laundering; in addition, repeated laundering did not influence the responsiveness and anti-corrosiveness of SMAs. Air volume had positive relations with the insulation. Attachment methods or stitch methods had limited impact on the thermal insulation. As a result, a wave type stitch with silicone attachment was suggested as the optimum method to attach the SMA springs onto the intelligent turnout gear for fire fighters.

A CONCEPTUAL DESIGN OF RADIATIVE THERMAL CONTROL SYSTEM IN A GEOSTATIONARY SATELLITE OPTICAL PAYLOAD (정지궤도위성 광학탑재체 복사 열제어 시스템 개념 설계)

  • Kim, Jung-Hoon;Jun, Hyoung-Yoll
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.62-68
    • /
    • 2007
  • A conceptual thermal design is performed for the optical payload system of a geostationary satellite. The optical payload considered in this paper is GOCI(Geostationary Ocean Color Imager) of COMS of Korea. The radiative thermal control system is employed in order to expect a small thermal gradient in the telescope structure of GOCl. Two design margins are applied to the dedicated radiator dimensioning, and three kinds of configuration to the heater power sizing. A Monte-Carlo ray tracing method and a network analysis method are utilized to calculate radiative couplings and thermal responses respectively. At the level of conceptual design, sizing thresholds are presented for the radiator and heater on the purpose of determining the mass and power budget of the spacecraft.

The Control of Hydration Heat by Using Liquefied Nitrogen in Mass Concrete Structures (액화질소를 이용한 매스 콘크리트 구조물의 수화열 제어)

  • Yang, In-Hwan;Eo, Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1151-1156
    • /
    • 2000
  • Temperature rise and restraint condition in mass concrete structures may induce the cracks at early ages. The method to prevent the cracks induced by heat of hydration has become the major concern in mass concrete structure. Therefore, the purpose of this study is to propose a method to control heat of hydration in mass concrete structures by using cryogenic liquefied nitrogen. The method in this study was applied to actual mass concrete structure to prevent the occurrence of thermal cracks at early ages. The surface observation of structure during more than one month shows that there are seldom cracks. This represent that the method in the study is effective in the control of heat of hydration.

  • PDF

Analytical study of house wall and air temperature transients under on-off and proportional control for different wall type

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.1
    • /
    • pp.70-81
    • /
    • 2010
  • A mathematical model is formulated to study the effect of wall mass on the thermal performance of four different houses of different construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one -dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. These discrete data are then converted to a continuous, time dependent form using a Fast Fourier Transform method. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. A computer code is developed to calculate the wall temperature profile, room air temperature, and energy consumption loads. Three sets of results are calculated one for no auxiliary energy and two for different control mechanism -- an on-off controller and a proportional controller. Comparisons are made for the cases of two controllers. Heavy weight houses with insulation in mild weather areas (such as August in Santa Maria, California) show a high comfort level. Houses using proportional control experience a higher comfort level in comparison to houses using on-off control. The result shows that there is an effect of mass on the thermal performance of a heavily constructed house in mild weather conditions.

Numerical Simulation of Temperature and Stress Distribution in Mass Concrete with pipe cooling and Comparision with Experimental Measurements (매스콘크리트 시험체의 수화열 해석 및 실험)

  • 주영춘;김은겸;신치범;조규영;박용남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.269-274
    • /
    • 1999
  • Various method have been developed for mass concrete structures to reduce the temperature increase of concrete mass due to exothermic hydration reactions of concrete compounds and thereby to avoid thermal cracks. One of the methods widely acceptable for practical use is pipe cooling, in which cooling is achieved by circulating cold water through thin-wall steel pipes embedded in the concrete. A numerical simulation was performed to investigate the effectiveness of pipe cooling. A three-dimensional finite element method was proposed to analyse the transient three-dimensional heat transfer between the hardening concrete and the cooling water in pipe and to predict the stress development during the curing process. The effects of the cement type and content and the environment were taken into consideration by the heat generation rate and the boundary conditions, respectively. In order to test the validity of the numerical simulation, a model RC structure with pipe cooling was constructed and the time-dependent temperature and stress distributions within the structure as well as the variation of the temperature of cooling water along the pipe were measured. The results of the simulation agreed well the experimental measurements. The results of this study have important implications for the optimal design of the cooling pipe layout and for the estimation of thermal stress in order to eliminate thermal cracks.

  • PDF