• Title/Summary/Keyword: Thermal Load

Search Result 1,832, Processing Time 0.039 seconds

Thermal buckling load optimization of laminated plates with different intermediate line supports

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.207-223
    • /
    • 2012
  • This paper deals with critical thermal buckling load optimization of symmetrically laminated four layered angle-ply plates with one or two different intermediate line supports. The design objective is the maximization of the critical thermal buckling load and a design variable is the fibre orientation in the layers. The first order shear deformation theory and nine-node isoparametric finite element model are used for the finite element solution of the laminates. The modified feasible direction (MFD) method is used for the optimization routine. For this purpose, a program based on FORTRAN is used. Finally, the numerical analysis is carried out to investigate the effects of location of the internal line supports, plate aspect ratios and boundary conditions on the optimal designs and the results are compared.

Transient dynamic analysis of sandwich beam subjected to thermal and pulse load

  • Layla M. Nassir;Mouayed H.Z. Al-Toki;Nadhim M. Faleh;Hussein Alwan Khudhair;Mamoon A.A. Al-Jaafari;Raad M. Fenjan
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Transient dynamic behavior of a sandwich beam under thermal and impulsive loads has been researched in the context of higher-order beam theory. The impulse load of blast type has been enforced on the top exponent of the sandwich beam while it is in a thermal environment. The core of the sandwich beam is cellular with auxetic rectangular pattern, whereas the layers have been built with the incorporation of graphene oxide powder (GOP) and are micromechanically introduced through Halpin-Tsai formulization. Governing equations for the sandwich beam have been solved through inverse Laplace transform style for obtaining the dynamical deflections. The connection of beam deflections on temperature variability, GOP quantity, pulse load situation and core relative density has been surveyed in detail.

High Fidelity Calculation of Thermal Load in a Satellite Orbit (고정확도의 인공위성 궤도 열하중 계산 기법)

  • Kim, Min-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.10
    • /
    • pp.898-906
    • /
    • 2017
  • This paper discusses the efficient high fidelity calculation of external thermal loads of a spacecraft on its orbit. Thermal loads to a spacecraft consist of three major components, direct solar radiation, earth reflection of solar rays, and earth irradiation. With the assumption that both earth reflection and earth emission are diffuse, thermal loads from earth surface divided into pieces of segments to satellite surfaces are individually calculated and summed over. By using analytical integration of both reflected and emitted heat load by earth, high rate of numerical convergence is achieved and the results are even exactly calculated in special cases. Moreover, KD tree ray tracing is employed in the calculation of thermal load to determine whether the radiated ray is obstructed or not by satellite structure.

Design Optimization of Thermal Radiation Shield Cooled by Cryocooler (냉동기에 의해 냉각되는 복사열차폐 최적설계)

  • Choi, Y.S.;Tang, Hongming;Kim, D.L.;Yang, H.S.;Lee, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2171-2174
    • /
    • 2008
  • The design of thermal radiation shield cooled by a cryocooler is presented. This study is motivated mainly by our recent development of prototype superconducting magnet system for the Cyclotron K120. The superconducting magnet system is composed of the magnet cryostat, transfer line and supply cryostat. In order to minimize thermal radiation load, the superconducting coil form in the magnet cryostat is enclosed by the thermal radiation shield which is thermally connected to the first-stage cold head of a two-stage cryocooler in the supply cryostat. Since the supply cryostat is located far from the magnet cryostat large temperature gradient along the thermal shield is unavoidable. In this paper, the thermal radiation shield is optimized to minimize temperature gradient with taking into account the cryogenic load, system structure and electrical load. The effect of heat source from thermal conduction through mechanical supports on the temperature distribution of thermal radiation shield is also discussed.

  • PDF

Stress Analysis of the Micro-structure Considering the Residual Stress (잔류응력을 고려한 미세구조물의 강도해석)

  • 심재준;한근조;안성찬;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.820-823
    • /
    • 2002
  • MEMS structures Generally have been fabricated using surface-machining, but the interface failure between silicon substrate and evaporated thin film frequently takes place due to difference of linear coefficient of thermal expansion. Therefore this paper studied the effect of the residual stress caused by variable external loads. This study did not analyzed accurate quantity of the residual stress but trend for the effect of residual stress. Several specimens were fabricated using other material(Al, Au and Cu) and thermal load was applied. The residual stress was measured by nano-indentation using AFM. The results showed the existence of the residual stress due to thermal load. The indentation area of the thermal loaded thin film reduced about 3.5% comparing with the virgin thin film caused by residual stress. The finite element analysis results are similar to indentation test.

  • PDF

Thermal Performance of Building Envelope with Transparent Insulation Wall (건물 외피 투과형단열 벽체의 열성능 해석 연구)

  • Jang, Yong-Sung;Yoon, Yong-Jin;Park, Hyo-Soon
    • KIEAE Journal
    • /
    • v.5 no.1
    • /
    • pp.27-33
    • /
    • 2005
  • Global efforts have made to reduce energy consumption and $CO_2$ gas emission. One of the weakest parts for energy loss through the whole building components is building envelopes. Lots of technologies to increase the thermal performance of building envelopes have been introduced in recent year. Transparent Insulation Wall(TIW) is a new technology for building insulation and has been function both solar transmittance and thermal insulation. A mathematical model of a Transparent Insulation Wall equipped with south wall was proposed in order to predict thermal performance under varying climates(summer and winter). Unsteady state heat transfer equations were set up using an energy balance equation and solved using Gauss-Seidel iteration solution procedure. The thermal performance of the TIW determined from a wall surface and air layer temperature, non-airconditioned room temperature and air conditioning load. As a result, this numerical study shows that the TIW is effective in an air conditioning load reduction. Further experimental study is required to establish complete TIW system.

Operation Scheduling of Industrial Cogeneration System with Each other Generation Mode (서로다른 발전방식으로 운전되는 산업용 열병합발전시스템의 최적운전계획 수립)

  • Jeong, Ji-Hoon;Lee, Jong-Beom;Oh, Sung-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.354-356
    • /
    • 2000
  • This paper describes the strategy of a daily optimal operational scheduling on cogeneration systems with each other generation mode. The cogeneration systems consists of three generators. auxiiiary devices which are three auxiliary boilers, two waste boilers and three sludge incinerators. One unit that using the back pressure turbin generates the electrical and the thermal energy. The other two units that using the extraction condensing turbine generate the energy. Auxiliary devices operate to supplement the thermal energy to the thermal load with three units. The cogeneration system has a large capacity which is able to supply enough the thermal energy to the thermal load, however the electric power generated is insufficient to satisfy the electrical load. Therefore the insufficient electric energy is supplemented by buying electrical energy from the utility. Simulation was carried out using optimization toolbox. The result reveals that the proposed modeling and strategy can be effectively applied to cogeneration systems with each other generation mode.

  • PDF

A Study on Control Method of Thermal Storage Tank for Varying Thermal Load in Heat Pump Water Heater (열펌프 온수기의 부하 대응 축열조 제어에 관한 연구)

  • Nam, Hyun-Kyu;Bai, Cheol-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.330-335
    • /
    • 2012
  • A characteristic behavior of the thermal storage tank for varying thermal load in heat pump water heater was studied. The control method was suggested and applied. By measuring the temperature within the storage tank, the heat pump was ON/OFF controlled. The appropriate measuring position and the size of heat exchanger gives the minimized power consumption of heat pump. As the length of heat exchanger increases, the temperature measuring position goes down of the storage tank and the power consumption increases.

Thermal Analysis of a Cryochamber for an Infrared Detector Considering a Radiation Shield (적외선 검출기용 극저온 챔버에서 복사 차폐막을 고려한 열해석)

  • Kim Young-Min;Kang Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.672-677
    • /
    • 2006
  • The steady cooling characteristics of a cryochamber for infrared (IR) detector have been investigated analytically, considering radiation shields. The thermal modeling considers the conduction heat transfer through cold finger, the gaseous conduction due to out-gassing, and the radiation heat transfer. The cooling load of the cryochamber is obtained by using a fin equation. The results obtained indicate that the gaseous conduction plays an important role in determining the steady cooling load. The steady cooling load is increased as the gas pressure is increased. It is also found that the cooling load is substantially decreased with a radiation shield. The most thermal load of a cryochamber occurs through the cold finger.

Thermal Design and Heat Load Measurement of PSICS (적외선 우주망원경 냉각시스템 열설계 및 열침입량 측정)

  • Yang H. S.;Kim D. L.;Lee B. S.;Choi Y. S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.3
    • /
    • pp.43-46
    • /
    • 2005
  • A Protomodel Space Infrared Cryogenic System (PSICS) cooled by a stirling cryocooler was designed. The PSICS has an IR sensor inside a cold box which is cooled by a stilting cryocooler with refrigeration capacity of 500mw at 80K in a vacuum vessel. It is important to minimize heat load for reducing background thermal noise. In order to design the cryogenic system of low heat load and to reduce heat load, we did several numerical analyses and tested using boil-off calorimetry with liquid nitrogen to measure the heat leak of the system. In this paper, we present the results obtained by thermal analysis and heat load measurement for designing the PSICS.