• 제목/요약/키워드: Thermal Image processing

검색결과 138건 처리시간 0.025초

산 증식형 포토레지스트로 Poly($MTC_{10}-co-tBMA_{90}$)의 합성 및 특성 연구 (Poly[(1-methacryloyloxy-4-tosyloxycyclohexane)-co-(tert-butyl methacrylate)] as an acid amplifying photoresist)

  • 권경아;이은주;임권택;정용석;정연태
    • 한국인쇄학회지
    • /
    • 제20권2호
    • /
    • pp.131-140
    • /
    • 2002
  • Chemically amplified deep UV(CA-DUV) resists are typically based on a combination of an acid labile polymer and a photoacid generator(PAG) but acid amplification type photoresist is formulated by addition of the acid amplifiers to chemically amplified resist system(CAPs). We developed acid amplifiers base on cyclohexanediol such as 1-methacryloyloxy-4-tosyloxy cyclohexane(MTC) and poly(MTC$_{10}$-co-tBMA$_{90}$)(P-1) to enhance photosensitivity. P-1 is a copolymer of tert-butyl methacrylate and MTC as a positive working photoresist based on polymeric acid amplifier in order to enhance photosensitivity and simplify the process of fomulating a photoresist. P-1 exhibited 2X higher photosensitivity compared with PtBMA. The acid amplifiers showed reasonable thermal stability for resist processing temperature and higher photosensitivity compared with chemically amplified resist.

  • PDF

능동 적외선 열화상 기법에 의한 SM45C 이면결함 검출 열영상에 관한 연구 (Thermal Imaging for Detection of SM45C Subsurface Defects Using Active Infrared Thermography Techniques)

  • 정윤재;;김원태
    • 비파괴검사학회지
    • /
    • 제35권3호
    • /
    • pp.193-199
    • /
    • 2015
  • 능동적 열화상 기법은 넓은 면적을 동시에 검사할 수 있으며, 결함부와 건전부 사이의 위상차로부터 결함의 유무를 판단할 수 있다. 지금까지 다양한 재료와 시험편을 가지고 결함 검출 기법에 대한 발전이 이루어졌다. 본 논문에서는 위상잠금 열화상 기법을 적용하여 각각 다른 결함의 크기와 깊이의 인공결함을 갖는 SM45C 시험편을 가지고 제안된 기법을 검증하였으며, 결론으로서 결함의 크기, 깊이에 따른 위상 이미지와 진폭 이미지 검사 결과를 비교하여 결함 검출능을 평가할 수 있었다.

Thermal Analysis of Silicon Carbide Coating on a Nickel based Superalloy Substrate and Thickness Measurement of Top Layers by Lock-in Infrared Thermography

  • Ranjit, Shrestha;Kim, Wontae
    • 비파괴검사학회지
    • /
    • 제37권2호
    • /
    • pp.75-83
    • /
    • 2017
  • In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.

전단간섭계와 적외선열화상을 이용한 감육 직관의 결함검출 (Defect Detection of Wall Thinned Straight Pipe using Shearography and Lock-in Infrared Thermography)

  • 김경석;정현철;장호섭;김하식;나성원
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.55-61
    • /
    • 2009
  • The wall thinning defect of nuclear power pipe is mainly occurred by the affect of the flow accelerated corrosion (FAC) of fluid. This type of defect becomes the cause of damage or destruction of in carbon steel pipes. Therefore, it is very important to measure defect which is existed not only on the welding part but also on the whole field of pipe. This study use dual-beam Shearography, which can measure the out-of-plane deformation and the in-plane deformation by using another illuminated laser beam and simple image processing technique. And this study proposes Infrared thermography, which is a two-dimensional non-contact nondestructive evaluation that can detect internal defects from the thermal distribution by the inspection of infrared light radiated from the object surface. In this paper, defect of nuclear power pipe were, measured using dual-beam shearography and infrared thermography, quantitatively evaluated by the analysis of phase map and thermal image pattern.

능동 적외선열화상 기법을 이용한 이면결함 검출에서의 측정 불확도 (Measurement Uncertainty on Subsurface Defects Detection Using Active Infrared Thermographic Technique)

  • 정윤재;김원태;최원재
    • 비파괴검사학회지
    • /
    • 제35권5호
    • /
    • pp.341-348
    • /
    • 2015
  • 능동적 열화상 기법은 재료의 수동적 열적결함에 있어 기존의 적외선 열화상 기법에 비해 우수한 결함 검출능력을 보이는 것으로 알려져 있다. 적외선 비파괴 검사는 지금까지 다양한 검출 기법에 대한 발전이 이루어졌으나 신뢰성에는 다소 의문이 있다. 따라서 본 논문에서는 위상잠금 열화상기법을 적용하여 각각 다른 결함의 크기와 깊이의 인공결함을 갖는 SM45C 시험편을 가지고 제안된 기법을 검증하고, 불확도를 평가하여 위상잠금 열화상 기법을 이용한 결함의 크기측정에 대한 신뢰성을 검토하였다.

Characterisation of Tensile Deformation through Infrared Imaging Technique

  • B. Venkataraman, Baldev Raj;Mukhophadyay, C.K.
    • 비파괴검사학회지
    • /
    • 제22권6호
    • /
    • pp.609-620
    • /
    • 2002
  • It is well known that during tensile testing, a part of the mechanical work done on the specimen is transformed into heat energy. However, the ultimate temperature rise and the rate of temperature rise is related to the nature of the material, conditions of the test and also to the deformation behaviour of the material during loading. The recent advances in infrared sensors and image/data processing techniques enable observation and quantitative analysis of the heat energy dissipated during such tensile tests. In this study, infrared imaging technique has been used to characterise the tensile deformation in AISI type 316 nuclear grade stainless steel. Apart from identifying the different stages during tensile deformation, the technique provided an accurate full-field temperature image by which the point and time of strain localization could be identified. The technique makes it possible to visualise the region of deformation and failure and also predict the exact region of fracture in advance. The effect of thermal gradients on plastic flow in the case of interrupted straining revealed that the interruption of strain and restraining at a lower strain rate not only delays the growth of the temperature gradient, but the temperature rise per unit strain decreases. The technique is a potential NDE tool that can be used for on-line detection of thermal gradients developed during extrusion and metal forming process which can be used for ensuring uniform distribution of plastic strain.

저조도 야간 감시 시스템을 위한 열영상 기반 객체 검출 알고리즘 (Thermal Imagery-based Object Detection Algorithm for Low-Light Level Nighttime Surveillance System)

  • 장정욱;인치호
    • 한국ITS학회 논문지
    • /
    • 제19권3호
    • /
    • pp.129-136
    • /
    • 2020
  • 본 논문에서는 저조도 야간 감시 시스템을 위한 열영상 기반의 객체 검출 알고리즘을 제안한다. 기존 Adaboost를 이용한 Haar 특징점 선택 알고리즘은 학습 샘플에 대한 유사하거나 중복되는 특징점의 선택 문제와 잡음에 취약한 경우가 많았다. 또한 저조도 야간 환경의 감시 영상에서 얻어지는 잡음을 특징점 세트에서 제거하고 빠르고 효율적인 실시간 특징점 선택이 이루어질 수 있게 가벼운 확장형 Haar 특징점과 Adaboost 학습 알고리즘을 사용하여 구현하였다. 야간 저조도 환경에서 움직임이 있는 비예측 객체를 인식하기 위하여 열영상으로 촬영된 이미지에 확장 Haar 특징점을 사용하여 객체를 인식한다. 비디오 프레임 800*600 크기의 열영상 이미지를 입력으로 하는 Adaboost 학습 알고리즘을 CUDA 9.0 플랫폼으로 구현하여 시뮬레이션을 시행한다. 그 결과 객체 검출 결과는 성공률이 약 90% 이상임을 확인하였고, 이는 일반영상에 히스토그램 이퀄라이징 연산을 거쳐 얻어진 연산 결과보다 약 30% 더 빠른 처리 속도를 얻을 수 있었다.

의복의 여유분에 따른 단열력의 변화와 Thermogram을 활용한 의복 표면 온도 특성 분석 (The Change of Clothing Insulation and Surface Temperature Measured by Thermography with the Ease of Pattern)

  • 이병철;홍경희;이예진
    • 한국생활과학회지
    • /
    • 제19권6호
    • /
    • pp.1045-1052
    • /
    • 2010
  • Effects of the ease of pattern on the thermal conditions of clothing were investigated through the measurement of clothing surface temperatures using infrared thermography. Four vests with different pattern ease were worn by five male subjects. Surface temperature distribution on the clothing were then examined using a thermogram to view thermo-regulating characteristics affected by the ease of pattern. Representative surface temperatures were calculated based on the percentage of the surface area within a certain temperature range and the midpoint value of the corresponding area. Representative surface temperatures matches well to the thermal insulation value measured by thermal manikin. Results indicated that representative surface temperature could be a useful quantitative value if some simple calculations were to be used alongside accurate image processing.

A Study on Thermal Characteristics for Hand Carried Ultrasound System

  • Kim, Jong-Gu;Cho, Young-Jin;Kwack, Kae-Dal
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제9권2호
    • /
    • pp.149-163
    • /
    • 2009
  • This paper intends to suggest a design to reduce the thermal load of a hand-carried ultrasound (HCU) system, with the aim of increasing the product life. To design ways to reduce the heat load, the surface temperatures of key parts of an HCU system were measured as the 4 system cooling fans, which have a direct relation to the system life, were operated normally. When the derating rate of 80% was applied while the fans of the HCU system were operated abnormally, it was observed that the key image processing parts exceeded the surface temperature (TC) with consideration to derating. Since the part surface temperature did not exceed the derated level when the regulated voltage was derated from 12V to 9V, it is expected to lower the operating voltage of the fans to 9V to increase the fan and HCU system lifetime by 1.8 times.

  • PDF

Pair-Wise Serial ROIC for Uncooled Microbolometer Array

  • Haider, Syed Irtaza;Majzoub, Sohaib;Alturaigi, Mohammed;Abdel-Rahman, Mohamed
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권4호
    • /
    • pp.251-257
    • /
    • 2015
  • This work presents modelling and simulation of a readout integrated circuit (ROIC) design considering pair-wise serial configuration along with thermal modeling of an uncooled microbolometer array. A fully differential approach is used at the input stage in order to reduce fixed pattern noise due to the process variation and self-heating-related issues. Each pair of microbolometers is pulse-biased such that they both fall under the same self-heating point along the self-heating trend line. A ${\pm}10%$ process variation is considered. The proposed design is simulated with a reference input image consisting of an array of $127{\times}92$ pixels. This configuration uses only one unity gain differential amplifier along with a single 14-bit analog-to-digital converter in order to minimize the dynamic range requirement of the ROIC.