• Title/Summary/Keyword: Thermal Image Measurement

Search Result 120, Processing Time 0.022 seconds

Thermal Analysis of Silicon Carbide Coating on a Nickel based Superalloy Substrate and Thickness Measurement of Top Layers by Lock-in Infrared Thermography

  • Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.

Thermal Behavior Variations in Coating Thickness Using Pulse Phase Thermography

  • Ranjit, Shrestha;Chung, Yoonjae;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.259-265
    • /
    • 2016
  • This paper presents a study on the use of pulsed phase thermography in the measurement of thermal barrier coating thickness with a numerical simulation. A multilayer heat transfer model was ussed to analyze the surface temperature response acquired from one-sided pulsed thermal imaging. The test sample comprised four layers: the metal substrate, bond coat, thermally grown oxide and the top coat. The finite element software, ANSYS, was used to model and predict the temperature distribution in the test sample under an imposed heat flux on the exterior of the TBC. The phase image was computed with the use of the software MATLAB and Thermofit Pro using a Fourier transform. The relationship between the coating thickness and the corresponding phase angle was then established with the coating thickness being expressed as a function of the phase angle. The method is successfully applied to measure the coating thickness that varied from 0.25 mm to 1.5 mm.

Deep-learning-based system-scale diagnosis of a nuclear power plant with multiple infrared cameras

  • Ik Jae Jin;Do Yeong Lim;In Cheol Bang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.493-505
    • /
    • 2023
  • Comprehensive condition monitoring of large industry systems such as nuclear power plants (NPPs) is essential for safety and maintenance. In this study, we developed novel system-scale diagnostic technology based on deep-learning and IR thermography that can efficiently and cost-effectively classify system conditions using compact Raspberry Pi and IR sensors. This diagnostic technology can identify the presence of an abnormality or accident in whole system, and when an accident occurs, the type of accident and the location of the abnormality can be identified in real-time. For technology development, the experiment for the thermal image measurement and performance validation of major components at each accident condition of NPPs was conducted using a thermal-hydraulic integral effect test facility with compact infrared sensor modules. These thermal images were used for training of deep-learning model, convolutional neural networks (CNN), which is effective for image processing. As a result, a proposed novel diagnostic was developed that can perform diagnosis of components, whole system and accident classification using thermal images. The optimal model was derived based on the modern CNN model and performed prompt and accurate condition monitoring of component and whole system diagnosis, and accident classification. This diagnostic technology is expected to be applied to comprehensive condition monitoring of nuclear power plants for safety.

Experimental Study on Internal Flow of a Mini Centrifugal Pump by PIV Measurement

  • Wu, Yulin;Yuan, Huijing;Shao, Jie;Liu, Shuhong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.121-126
    • /
    • 2009
  • The internal flow field in a centrifugal pump working at the several flow conditions has been measured by using the particle image velocimetry (PIV) technique with the laser induced fluorescence (LIF) particles and the refractive index matched (RIM) facilities. The impeller of the centrifugal pump has an outlet diameter in 100mm, and consists of six two-dimensional curvature backward swept blades of constant thickness. Measured results give reliable flow patterns in the pump. It is obvious that application of LIF particle and RIM are the key methods to obtain the right PIV measured results in pump internal flow.

Accuracy analysis on the temperature measurement with thermistor (인공위성용 서미스터의 온도측정 정확도 분석)

  • Suk, Byong-Suk;Lee, Yun-Ki;Lee, Na-Young
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.115-120
    • /
    • 2008
  • The thermistors and AD590 are widely used for temperature measurement in space application. The resistance of thermistor will vary according to the temperature variation therefore the external voltage or current stimulus signal have to be provided to measure resistance variation. Recently high resolution electro optic camera system of satellite requires tight thermal control of the camera structure to minimize the thermal structural distortion which can affects the image quality. In order to achieve $1^{\circ}$(deg C) thermal control requirement, the accuracy of temperature measurement have to be higher than $0.3^{\circ}$(deg C). In this paper, the accuracy of temperature measurement using thermistors is estimated and analyzed.

  • PDF

Thermal Deformation Measurement of Notched Structure Using Global-local Multi-DIC System (전역-국부 다중 DIC 시스템을 이용한 노치 구조물의 열변형 계측)

  • Xin, Ruihai;Doan, Nguyen Vu;Goo, Nam Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.617-626
    • /
    • 2021
  • During supersonic flight of vehicles, the thermal behavior of structures under high-temperature environment is important for thermal-structural design. In this study, full-field thermal deformation and stress concentration of the notched structure was performed using global-local multi-digital image correlation (multi-DIC) systems. This techniques were developed and implemented by multi-DIC systems consists of 2D DIC system and 3D DIC system. The specimen was heated in a heating chamber to achieve the thermal expansion behavior. Then the images of structure's deformation and stress concentration at various temperature were recorded and analyzed by multi-DIC system. Afterward, full-field thermal deformation of the notched structure was determined with DIC technique and stress concentration at the notched structure was calculated by further processing. Finite element analysis of the notched structure is performed in ABAQUSTM and the results of the experiments show good agreement with those obtained from simulation. The results achieved in this study show the efficiency of the muilti-DIC method in thermal deformation as well as stress concentration of notched structure.

Development of Calibration Target for Infrared Thermal Imaging Camera (적외선 열화상 카메라용 캘리브레이션 타겟 개발)

  • Kim, Su Un;Choi, Man Yong;Park, Jeong Hak;Shin, Kwang Yong;Lee, Eui Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.248-253
    • /
    • 2014
  • Camera calibration is an indispensable process for improving measurement accuracy in industry fields such as machine vision. However, existing calibration cannot be applied to the calibration of mid-wave and long-wave infrared cameras. Recently, with the growing use of infrared thermal cameras that can measure defects from thermal properties, development of an applicable calibration target has become necessary. Thus, based on heat conduction analysis using finite element analysis, we developed a calibration target that can be used with both existing visible cameras and infrared thermal cameras, by implementing optimal design conditions, with consideration of factors such as thermal conductivity and emissivity, colors and materials. We performed comparative experiments on calibration target images from infrared thermal cameras and visible cameras. The results demonstrated the effectiveness of the proposed calibration target.

PIV Measurement on the Flows of PDP(Plasma Display Panel) (PDP 유동장 PIV 계측)

  • Doh, D.H.;Cho, G.R.;Pyun, Y.B.;Song, J.S.;Baek, T.S.;Jung, W.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.733-737
    • /
    • 2001
  • Heat generated from the electronic parts in PDP is undesirable physical properties. To attain optimal arrangement of the electronic parts in PDP, thermal flows in PDP should be analyzed. PIV measurement has been made to quantify the characteristics of the inner flows and outer flows of an actual PDP. The quantity of heat flux from PDP has been estimated using the PIV results. Measurement system consists of Ar-ion laser, CCD camera and an image grabber installed on a host computer.

  • PDF

Simultaneous Measurement of Fluid Velocity and Particle Velocity in a Particle-Containing Fluid Flow (입자가 포함된 유동장에서 유체속도와 입자속도의 동시 측정기법)

  • Jin Dong-Xu;Lee Dae-Young;Lee Yoon-Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.355-363
    • /
    • 2005
  • A novel method for simultaneously measuring the fluid velocity and the large particle velocity in a particle-containing fluid flow is developed in this study. In this method, the fluid velocity and the large particle velocity are measured by PIV and PTV, respectively. The PIV and PTV images are obtained from the same flow images. Since a PIV result represents the average displacement of all particles in an interrogation area, it will include an error caused by the relative displacement between the large particles and the fluid. In order to reduce the false influence of large particles on the PIV calculation, the mean brightness of small PIV particle images is substituted to the locations of large particles in the PIV images. The simulation results showed that the new method significantly reduces the PIV error caused by the large particles even at the case where the large particles occupy area fraction as large as $20\%$ of the full image.

Measurement and Compensation of Heliostat Sun Tracking Error Using BCS (Beam Characterization System) (광특성분석시스템(BCS)을 이용한 헬리오스타트 태양추적오차의 측정 및 보정)

  • Hong, Yoo-Pyo;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.502-508
    • /
    • 2012
  • Heliostat, as a concentrator to reflect the incident solar energy to the receiver, is the most important system in the tower-type solar thermal power plant since it determines the efficiency and ultimately the overall performance of solar thermal power plant. Thus, a good sun tracking ability as well as a good optical property of it are required. Heliostat sun tracking system uses usually an open loop control system. Thus the sun tracking error caused by heliostat's geometrical error, optical error and computational error cannot be compensated. Recently use of sun tracking error model to compensate the sun tracking error has been proposed, where the error model is obtained from the measured ones. This work is a development of heliostat sun tracking error measurement and compensation method using BCS (Beam Characterization System). We first developed an image processing system to measure the sun tracking error optically. Then the measured error is modeled in linear polynomial form and neural network form trained by the extended Kalman filter respectively. Finally error models are used to compensate the sun tracking error. We also developed the necessary image processing algorithms so that the heliostat optical properties such as maximum heat flux intensity, heat flux distribution and total reflected heat energy could be analyzed. Experimentally obtained data shows that the heliostat sun tracking accuracy could be dramatically improved using either linear polynomial type error model or neural network type error model. Neural network type error model is somewhat better in improving the sun tracking performance. Nevertheless, since the difference between two error models in compensation of sun tracking error is small, a linear error model is preferred in actual implementation due to its simplicity.