• Title/Summary/Keyword: Thermal Image Camera

Search Result 193, Processing Time 0.023 seconds

Detection and Quantification of Defects in Composite Material by Using Thermal Wave Method

  • Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.398-406
    • /
    • 2015
  • This paper explored the results of experimental investigation on carbon fiber reinforced polymer (CFRP) composite sample with thermal wave technique. The thermal wave technique combines the advantages of both conventional thermal wave measurement and thermography using a commercial Infrared camera. The sample comprises the artificial inclusions of foreign material to simulate defects of different shape and size at different depths. Lock-in thermography is employed for the detection of defects. The temperature field of the front surface of sample was observed and analysed at several excitation frequencies ranging from 0.562 Hz down to 0.032 Hz. Four-point methodology was applied to extract the amplitude and phase of thermal wave's harmonic component. The phase images are analyzed to find qualitative and quantitative information about the defects.

Preliminary Study on Image Processing Method for Concrete Temperature Monitoring using Thermal Imaging Camera (열화상카메라 기반 콘크리트 온도 측정을 위한 이미지 프로세싱 적용 기초 연구)

  • Mun, Seong-Hwan;Kim, Tae-Hoon;Cho, Kyu-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.206-207
    • /
    • 2020
  • Accurate estimation of concrete strength development at early ages is a critical factor to secure structural stability as well as to speed up the construction process. The temperature generated from the heat of hydration is considered as a key parameter in predicting the early age strength. Conventionally, concrete temperature has been measured by temperature sensors installed inside concrete. However, considering the measurement on building structures with multiple floors, this method requires reinstallation and repositioning of hardware such as sensors, data loggers and routers for data transfer. This makes the temperature monitoring work cumbersome and inefficient. Concrete temperature monitoring by using thermal remote sensing can be an effective alternative to supplement those shortcomings. In this study, image processing was carried out through K-means clustering technique, which is a unsupervised learning method, and the classification results were analyzed accordingly. In the future, research will be conducted on how to automatically recognize concrete among various objects by using deep learning techniques.

  • PDF

Development and Possibility Evaluation of Thermal Imaging Camera for Medical Monitoring of Body Temperature (열화상카메라 개발을 통한 의료용 체열진단 가능성 평가)

  • Ryu, Seong Mi;Kim, Hye-Jeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 2015
  • Recently, thermography camera have been using for body-temperature monitoring. We report on fabrication of prototype thermography camera using the chalcogenide-glass lens and the camera test by analysis of thermal image. In this work, it was found out that thermography camera discerned body-temperature between 20 and $50^{\circ}C$ with noise equivalent temperature difference(NETD) of 87.7mK. It is confirmed that thermography camera using the chalcogenide-glass lens is applicable to the body-temperature monitoring system.

Development of an Optimum Void Detection Chart using Heat Transfer Simulation (열전달 시뮬레이션을 통한 최적공극탐지 차트개발)

  • Choi, Hyun-Ho;Park, Jin-Hyung;Ji, Goang-Seup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.241-244
    • /
    • 2006
  • It is essential to develop a large capacity, non-contact nondestructive inspection system having high reliability to investigate repaired and strengthened structures. Nowadays, an infrared camera is widely used in non-contact nondestructive inspection system. Because an infrared camera is sensitive to the surrounding environment, it is necessary to improve a sensitivity of thermal image information and a relationship between defects and thermal image information. In this papaer, presented is an optimum void detection chart for the optimum conditions to detect infrared rays from inside and outside defects like voids and cracks in concrete structures using extensive computer simulation. Sensitivity studies are performed with respect to variables influencing the temperature distribution such as heating temperature, heating time, and geometries of defect, etc. It may be stated that it could be successfully utilized for the non-contact nondestructive inspection system to detect defects in concrete structures.

  • PDF

Visible Light and Infrared Thermal Image Registration Method Using Homography Transformation (호모그래피 변환을 이용한 가시광 및 적외선 열화상 영상 정합)

  • Lee, Sang-Hyeop;Park, Jang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.707-713
    • /
    • 2021
  • Symptoms of foot-and-mouth disease include fever and drooling a lot around the hoof, blisters in the mouth, poor appetite, blisters around the hoof, and blisters around the hoof. Research is underway on smart barns that remotely manage these symptoms through cameras. Visible light cameras can measure the condition of livestock such as blisters, but cannot measure body temperature. On the other hand, infrared thermal imaging cameras can measure body temperature, but it is difficult to measure the condition of livestock. In this paper, we propose an object detection system using deep learning-based livestock detection using visible and infrared thermal imaging composite camera modules for preemptive response

Enhancing Single Thermal Image Depth Estimation via Multi-Channel Remapping for Thermal Images (열화상 이미지 다중 채널 재매핑을 통한 단일 열화상 이미지 깊이 추정 향상)

  • Kim, Jeongyun;Jeon, Myung-Hwan;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.314-321
    • /
    • 2022
  • Depth information used in SLAM and visual odometry is essential in robotics. Depth information often obtained from sensors or learned by networks. While learning-based methods have gained popularity, they are mostly limited to RGB images. However, the limitation of RGB images occurs in visually derailed environments. Thermal cameras are in the spotlight as a way to solve these problems. Unlike RGB images, thermal images reliably perceive the environment regardless of the illumination variance but show lacking contrast and texture. This low contrast in the thermal image prohibits an algorithm from effectively learning the underlying scene details. To tackle these challenges, we propose multi-channel remapping for contrast. Our method allows a learning-based depth prediction model to have an accurate depth prediction even in low light conditions. We validate the feasibility and show that our multi-channel remapping method outperforms the existing methods both visually and quantitatively over our dataset.

Analysis of Laser-beam Thermal Effects In an Infrared Camera and Laser Common-path Optical System (적외선 카메라-레이저 공통광학계의 레이저빔 열 영향성 분석)

  • Kim, Sung-Jae
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.153-157
    • /
    • 2017
  • An infrared camera and laser common-path optical system is applied to DIRCM (directional infrared countermeasures), to increase boresighting accuracy and decrease weight. Thermal effects of a laser beam in a common-path optical system are analyzed and evaluated, to predict any degradation in image quality. A laser beam with high energy density is absorbed by and heats the optical components, and then the surface temperature of the optical components increases. The heated optical components of the common-path optical system decrease system transmittance, which can degrade image quality. For analysis, the assumed simulation condition is that the laser is incident for 10 seconds on the mirror (aluminum, silica glass, silicon) and lens (sapphire, zinc selenide, silicon, germanium) materials, and the surface temperature distribution of each material is calculated. The wavelength of the laser beam is $4{\mu}m$ and its output power is 3 W. According to the results of the calculations, the surface temperature of silica glass for the mirror material and sapphire for the lens material is higher than for other materials; the main reason for the temperature increase is the absorption coefficient and thermal conductivity of the material. Consequently, materials for the optical components with high thermal conductivity and low absorption coefficient can reduce the image-quality degradation due to laser-beam thermal effects in an infrared camera and laser common-path optical system.

Development of Interferometer for Performance Assessment of IR Optical System (적외선 광학계통 성능평가를 위한 간섭계 개발)

  • 홍경희;고재준;이성태;장세안;오명호
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.179-185
    • /
    • 1991
  • Twyman-Green interferometer is developed for assessment of IR optical system performance. Light source is $CO_2$ gas laser which has 10.6$\mu \textrm m$ wavelength. The light beam is expanded to 2.5 cm dia by Ge lens and splitted by ZnSe parallel plane plate. One of the beams is reflected by refernce mirror which is operated PZT. The fringe will be detected by a pyro-electric vidicon camera and displayed by a CRT monitor. Here, the IR firinge is recorded on the thermal paper. In visible region, the light source is He-Ne laser. The fringe is detected by a CCD camera and displayed by the CRT monitor. The intensity of the fringe is digitized by a image card and processed by a PC. The wavefront aberration function, PSF and OTF are calculated. The results are displayed in 3-D graphs on the monitor or printed out by a line printer.

  • PDF

Development of Thermal Image Processing Module Using Common Image Processor (상용 이미지 처리 프로세서를 이용한 열화상 이미지 처리 모듈 개발)

  • Han, Joon Hwan;Cha, Jeong Woo;Kim, Bo Mee;Lim, Jae Sung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • The thermal image device support image to detect infrared light from the object without light. It can use not only defence-related industry, but also civilian industry. This paper presents a new thermal image processing module using common image processor. The proposed module shows 10~20% performance improvement with normal mode and 50% performance improvement with sleep mode compared with the previously thermal image module based FPGA. and it guarantees high scalability according to modular system. In addition, the proposed module improves modulation and reuse, so it expect to have reduction of development period, low development cost. various application. In addition, it expect to have satisfaction of customer requirements, development design, development period, release date of product.

Personalized Cooling Management System with Thermal Imaging Camera (열화상 카메라를 적용한 개인 맞춤형 냉각관리 시스템)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.782-785
    • /
    • 2021
  • In this paper, we propose a personalized cooling management system with thermal imaging camera. The proposed equipment uses a thermal imaging camera to control the amount of cold air and the system according to the difference between the user's skin temperature before and after the procedure. When the skin temperature is abnormally low, the cold air supply is cut off to prevent the possibility of a safety accident. It is economical by replacing the skin temperature sensor with a thermal imaging camera temperature measurement, and it can be visualized because the temperature can be checked with the thermal image. In addition, the proposed equipment improves the sensitivity of the sensor that measures the distance to the skin by calculating the focal length by using a dual laser pointer for the safety of a personalized cooling management system to which a thermal imaging camera is applied. In order to evaluate the performance of the proposed equipment, it was tested in an externally accredited testing institute. The first measured temperature range was -100℃~-160℃, indicating a wider temperature range than -150~-160℃(cryo generation/USA), which is the highest level currently used in the field. In addition, the error was measured to be ±3.2%~±3.5%, which showed better results than ±5%(CRYOTOP/China), which is the highest level currently used in the field. The second measured distance accuracy was measured as below ±4.0%, which was superior to ±5%(CRYOTOP/China), which is the highest level currently used in the field. Third, the nitrogen consumption was confirmed to be less than 0.15 L/min at the maximum, which was superior to the highest level of 6 L/min(POLAR BEAR/USA) currently used in the field. Therefore, it was determined that the performance of the personalized cooling management system applied with the thermal imaging camera proposed in this paper was excellent.