• 제목/요약/키워드: Thermal Hydraulic Behavior

검색결과 120건 처리시간 0.025초

2영역 튜브모텔을 고려한 CANDU 시뮬레이션용 DSNP 증기발생기 모델 개선 (Improvement of Steam Generator Model for DSNP with Two-Region Tube Bundle Model for CANDU Transient Simulation)

  • Cheon, Im-Jae;Seung, Seo-Jae
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1994년도 추계학술발표회 초록집
    • /
    • pp.135-140
    • /
    • 1994
  • An improved steam generator model has been developed for the DSNP simulation of normal operational transient behavior of CANDU nuclear power plant. For more realistic prediction of steam generator behavior during transient, tube bundle region is divided into two separate control volumes, subcooled region and saturated region, and the variation of thermal hydraulic properties in the control volume is accounted for more realistic estimates of outlet enthalpy of each control volume. Test results for typical CANDU operational transient case show reasonable transient behavior of steam generator with overall CANDU operation and improved operational characteristics of steam generator with power variation.

  • PDF

A Concise Design for the Irradiation of U-10Zr Metallic Fuel at a Very Low Burnup

  • Guo, Haibing;Zhou, Wei;Sun, Yong;Qian, Dazhi;Ma, Jimin;Leng, Jun;Huo, Heyong;Wang, Shaohua
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.734-743
    • /
    • 2017
  • In order to investigate the swelling behavior and fuel-cladding interaction mechanism of U-10Zr alloy metallic fuel at very low burnup, an irradiation experiment was concisely designed and conducted on the China Mianyang Research Reactor. Two types of irradiation samples were designed for studying free swelling without restraint and the fuel-cladding interaction mechanism. A new bonding material, namely, pure aluminum powder, was used to fill the gap between the fuel slug and sample shell for reducing thermal resistance and allowing the expansion of the fuel slug. In this paper, the concise irradiation rig design is introduced, and the neutronic and thermal-hydraulic analyses, which were carried out mainly using MCNP (Monte Carlo N-Particle) and FLUENT codes, are presented. Out-of-pile tests were conducted prior to irradiation to verify the manufacturing quality and hydraulic performance of the rig. Nondestructive postirradiation examinations using cold neutron radiography technology were conducted to check fuel cladding integrity and swelling behavior. The results of the preliminary examinations confirmed the safety and effectiveness of the design.

Performance analysis of automatic depressurization system in advanced PWR during a typical SBLOCA transient using MIDAC

  • Sun, Hongping;Zhang, Yapei;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.937-946
    • /
    • 2020
  • The aim in the present work is to simulate accident scenarios of AP1000 during the small-break loss-of-coolant accident (SBLOCA) and investigate the performance and behavior of automatic depressurization system (ADS) during accidents by using MIDAC (The Module In-vessel Degradation severe accident Analysis Code). Four types of accidents with different hypothetical conditions were analyzed in this study. The impact on the thermal-hydraulic of the reactor coolant system (RCS), the passive core cooling system and core degradation was researched by comparing these types. The results show that the RCS depressurization becomes faster, the core makeup tanks (CMT) and accumulators (ACC) are activated earlier and the effect of gravity water injection is more obvious along with more ADS valves open. The open of the only ADS1-3 can't stop the core degradation on the basis of the first type of the accident. The open of ADS1-3 has a great impact on the injection time of ACC and CMT. The core can remain intact for a long time and the core degradation can be prevent by the open of ADS-4. The all results are significant and meaningful to understand the performance and behavior of the ADS during the typical SBLOCA.

CATHARE simulation results of the natural circulation characterisation test of the PKL test facility

  • Salah, Anis Bousbia
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1446-1453
    • /
    • 2021
  • In the past, several experimental investigations aiming at characterizing the natural circulation (NC) behavior in test facilities were carried out. They showed a variety of flow patterns characterized by an inverted U-shape of the NC flow curve versus primary mass inventory. On the other hand, attempts to reproduce such curves using thermal-hydraulic system codes, showed 10-30% differences between the measured and calculated NC mass flow rate. Actually, the used computer codes are generally based upon nodalization using single U-tube representation. Such model may not allow getting accurate simulation of most of the NC phenomena occurring during such tests (like flow redistribution and flow reversal in some SG U-tubes). Simulations based on multi-U-tubes model, showed better agreement with the overall behavior, but remain unable to predict NC phenomena taking place in the steam generator (SG) during the experiment. In the current study, the CATHARE code is considered in order to assess a NC characterization test performed in the four loops PKL facility. For this purpose, four different SG nodalizations including, single and multi-U-tubes, 1D and 3D SG inlet/outlet zones are considered. In general, it is shown that the 1D and 3D models exhibit similar prediction results up to a certain point of the rising part of the inverted U-shape of the NC flow curve. After that, the results bifurcate with, on the one hand, a tendency of the 1D models to over-predict the measured NC mass flow rate and on the other hand, a tendency of the 3D models to under-predict the NC flow rate.

소듐냉각고속로 KALIMER-600 축소 물모의 열유동 가시화 실험장치 구축 및 거시 유동장 특성 측정 (Water-Simulant Facility Installation for the Sodium-Cooled Fast Reactor KALIMER-600 and Global Flow Measurement)

  • 차재은;김성오
    • 한국가시화정보학회지
    • /
    • 제9권4호
    • /
    • pp.54-62
    • /
    • 2011
  • KAERI has developed a KALIMER-600 which is a pool-type sodium-cooled fast reactor with a 600MWe electric generation capacity. For a SFR development, one of the main topics is an enhancement of the reactor system safety. Therefore, we have a long-term plan to design the large sodium experimental facility to evaluate the reactor safety and component performance. In order to extrapolate a thermal hydraulic phenomena in a large sodium reactor, the thermal hydraulics phenomena is under investigation in a 1/$10^{th}$ water-simulant facility for the KALIMER-600. In this paper, we shortly described the experimental facility setup and the measurement of the isothermal global flow behavior. For the flow field measurement, the PIV method was used in a transparent Plexiglas reactor vessel model at around $20^{\circ}C$ water condition.

Numerical Simulations of the Moisture Movement in Unsaturated Bentonite Under a Thermal Gradient

  • Park, J.W.;K. Chang;Kim, C.L.
    • Nuclear Engineering and Technology
    • /
    • 제33권1호
    • /
    • pp.62-72
    • /
    • 2001
  • The one-dimensional finite element program was developed to analyze the coupled behavior of heat, moisture, and air transfer in unsaturated porous media. By using this program, the simulation results were compared with those from the laboratory infiltration tests under isothermal condition and temperature gradient condition, respectively. The discrepancy of water uptake was found in the upper region of a bentonite sample under isothermal condition between numerical simulation and laboratory experiment. This indicated that air pressure was built up in the bentonite sample which could retard the infiltration velocity of liquid. In order to consider the swelling phenomena of compacted bentonite which cause the discrepancy of the distribution of water content and temperature, swelling and shrinkage factors were incorporated into the finite element formulation. It was found that these factors could be effective to represent the moisture diffusivity and unsaturated hydraulic conductivity due to volume change of bentonite sample.

  • PDF

사용후핵연료 심층처분을 위한 암석의 간접복합거동 연구사례 (Case Studies of Indirect Coupled Behavior of Rock for Deep Geological Disposal of Spent Nuclear Fuel)

  • 정호영;임주휘;민기복;권상기;최승범;신영진
    • 터널과지하공간
    • /
    • 제32권6호
    • /
    • pp.411-434
    • /
    • 2022
  • 사용후핵연료의 심층처분 개념에서 근계영역 암반은 열-수리-역학적 복합거동을 하게 되는 것으로 잘 알려져있다. 이러한 복합거동 과정에서 암석의 여러 물성들은 변화하는데, 이러한 물성변화를 합리적으로 반영하는 경우 고준위방사성폐기물 처분장의 장기안정성의 평가를 위해 활용되는 해석 및 현장시험의 신뢰도를 향상시킬 수 있다. 이를 위해 본 기술보고에서는 암석의 열-수리-역학적 간접복합거동에 관한 국내외 연구사례를 조사하고 분석하였다. 특히, 간접복합거동의 대표적인 사례 중 지하수에 의한 포화 및 온도 증가에 따른 암석의 여러 물성 변화, 응력 변화에 의한 투수계수 변화를 중점적으로 조사·요약하였다.

A Loss-of-RHR Event under the Various Plant Configurations in Low Power or Shutdown Conditions

  • Seul, Kwang-Won;Bang, Young-Seok;Lee, Sukho;Kim, Hho-Jung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.551-556
    • /
    • 1997
  • A present study addresses a loss-of-RHR event as an initiating event under specific low power or shutdown conditions. Two typical plant configurations, cold leg opening case with water-filled steam generators and pressurizer opening case with emptied steam generators, were evaluated using the RELAP5/ MOD3.2 code. The calculation was compared with the experiment conducted at ROSA-IV/LSTF in Japan. As a result, the code was capable of simulating the system transient behavior following the event. Especially, thermal hydraulic transport processes including non-condensable gas behavior were reasonably predicted with an appropriate time step and CPU time. However, there were some code deficiencies such as too large system mass errors and severe flow oscillations in core region.

  • PDF

Study on The Development of Basic Simulation Network for Operational Transient Analysis of The CANDU Power Plant

  • Park, Jong-Woon;Lim, Jae-cheon;Suh, Jae-seung;Chung, Ji-bum;Kim, Sung-Bae
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.423-428
    • /
    • 1995
  • Simulation models have been developed to predict the overall behavior of the CANDU plant systems during normal operational transients. For real time simulation purpose, simplified thermal hydraulic models are applied with appropriate system control logics, which include primary heat transport system solver with its component models and secondary side system models. The secondary side models are mainly used to provide boundary conditions for primary system calculation and to accomodate plant power control logics. Also, for the effective use of simulation package, hardware oriented basic simulation network has been established with appropriate graphic display system. Through validation with typical plant power maneuvering cases using proven plant performance analysis computer code, the present simulation package shows reasonable capability in the prediction of the dynamic behavior of plant variables during operational transients of CANDU plant, which means that this simulation tool can be utilized as a basic framework for full scope simulation network through further improvements.

  • PDF

INTERNATIONAL STANDARD PROBLEM 50: THE UNIVERSITY OF PISA CONTRIBUTION

  • Cherubini, Marco;Lazzerini, Davide;Giannotti, Walter;D'auria, Francesco
    • Nuclear Engineering and Technology
    • /
    • 제44권6호
    • /
    • pp.587-596
    • /
    • 2012
  • The present paper deals with the participation of the University of Pisa in the last International Standard Problem (ISP) focused on system thermal hydraulic, which was led by the Korean Atomic Energy Research Institution (KAERI). The selected test was a Direct Vessel Injection (DVI) line break carried out at the ATLAS facility. University of Pisa participated, together with other eighteen institutions, in both blind and open phase of the analytical exercise pursuing its methodology for developing and qualifying a nodalization. Qualitative and quantitative analysis of the code results have been performed for both ISP-50 phases, the latter adopting the Fast Fourier Transfer Based Method (FFTBM). The experiment has been characterized by three-dimensional behavior in downcomer and core region. Even though an attempt to reproduce these phenomena, by developing a fictitious three-dimensional nodalization has been realized, the obtained results were generally acceptable but not fully satisfactory in replicating 3D behavior.