• Title/Summary/Keyword: Thermal Growth Region

Search Result 82, Processing Time 0.022 seconds

Study on the Single Bubble Growth During Nucleate Boiling at Saturated Pool (포화상태 풀비등시 단일기포의 성장에 관한 연구)

  • Kim Jeongbae;Lee Han Choon;Oh Byung Do;Kim Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.169-179
    • /
    • 2005
  • Nucleate boiling experiments on heating surface of constant wall temperature were performed using R113 for almost saturated pool boiling conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain a constant wall temperature condition of heating surface and to measure the heat flow rate with high temporal and spatial resolutions. Bubble images during the bubble growth were taken as 5000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble growth behavior was analyzed using the new dimensionless parameters for each growth regions to permit comparisons with previous experimental results at the same scale. We found that the new dimensionless parameters can describe the whole growth region as initial and later (thermal) respectively. The comparisons showed good agreement in the initial and thermal growth regions. In the initial growth region including surface tension controlled, transition and inertia controlled regions as divided by Robinson and Judd, the bubble growth rate showed that the bubble radius was proportional to $t^{2/3}$ regardless of working fluids and heating conditions. And in the thermal growth region as also called asymptotic region, the bubble showed a growth rate that was proportional to $t^{1/5}$, also. Those growth rates were slower than the growth rates proposed in previous analytical analyses. The required heat flow rate for the volume change of the observed bubble was estimated to be larger than the heat flow rate measured at the wall. Heat, which is different from the instantaneous heat supplied through the heating wall, can be estimated as being transferred through the interface between bubble and liquid even with saturated pool condition. This phenomenon under a saturated pool condition needs to be analyzed and the data from this study can supply the good experimental data with the precise boundary condition (constant wall temperature).

Numerical Simulation of Effects of TGO Growth and Asperity Ratio on Residual Stress Distributions in TC-BC-TGO Interface Region for Thermal Barrier Coatings (열차폐 코팅의 TGO 성장과 형상비에 따른 TC-BC-TGO 계면에서의 잔류응력 변화에 대한 유한요소해석)

  • Jang, Jung-Chel;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.415-420
    • /
    • 2006
  • The residual stresses in the interface region of the Thermal Barrier Coating (TBC)/Thermally Grown Oxide (TGO)/Bond Coat (BC) were calculated on the TBC-coated superalloy samples using a Finite Element Method (FEM). It was found that the stress distribution of the interface boundary was dependent upon mainly the geometrical shape or its aspect ratio and the thickness of TGO layer, which was formed by growth and swelling behavior of oxide layer. Maximum compressive residual stress in the TBC/TGO interface is higher than that of the TGO/bond coat interface, and the tensile stress had nothing to do with change of an aspect ratio. The compressive residual stresses in the TBC/TGO and TGO/bond coat interface region increased gradually with the TGO growth.

Correlation defects of macrostructure with morphology of BGO crystals grown by low thermal gradient Czochralski technique

  • Shlegel, V.N.;Shubin, Yu.V.;Ivannikova, N.V.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.1-4
    • /
    • 2003
  • In the present work we consider morphological structure of the faces of BGO crystals grown by Czochralski technique under the conditions of low temperature gradient (0.1~1 deg/cm) and interconnection between the morphological features of faces at the crystallization front and the formation of defects within the crystal volume. It is demonstrated that the {112} faces retain stability while the growing surface deviates from the crystallographic (112) plane up to 1 degree. At larger deviation, the region of the stable facet growth passes either to the region of macrosteps or to the region of normal growth. depending on conditions.

Grain Growth By The Thermal Spike Effect of the Ion Irradiation (이온선 조사의 열충격 효과에 의한 grain 성장)

  • 김성수;송종환;채근화;주장헌;우정주;이임렬;황정남;김현경;문대원
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.3
    • /
    • pp.137-143
    • /
    • 1991
  • The relation between the ion irradiation induced grain growth and the basic parameters sinvolved in ion beam mixing process was studied. TEM micrographs showed that a significant grain growth has been induced by Ar+ irradiation at room temperature. The grain size increases rapidly in low dose region, while it approaches a saturated value in high dose region, and it has close relationship with nuclear energy deposition and thermodynamic properties such as cohesive energy ( Hc) and heat of mixing ( Hm). A model for the grain growth based on the thermal spike induced atomic migration was developed and applied to interpret experimental results.

  • PDF

Wall Superheat Effect on Single Bubble Growth During Nucleate Boiling at Saturated Pool (풀 핵비등시 단일 기포 성장에 대한 벽면 과열도의 영향에 관한 연구)

  • Kim Jeong bae;Lee Han Choon;Kim Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.633-642
    • /
    • 2005
  • Nucleate pool boiling experiments for R11 under a constant wall temperature condition were carried out. A microscale heater array was used for the heating and the measurement of high temporal and spatial resolution by the Wheatstone bridge circuit. Very sensitive heat flow rate data were obtained by the control for the surface condition with high time resolution. The measured heat flow rate shows a discernable peak at the initial growth stage and reaches an almost constant value. In the thermal growth region, bubble shows a growth proportional to $t^{\frac{1}{5}}$. The bubble growth behavior is analyzed with a dimensionless parameter to compare with the previous results in the same scale. As the wall superheat increases, the departure diameter and the departure time increase, and the waiting time decreases. But the asymptotic growth rate is not affected by the wall superheat change. The effect of the wall superheat is resolved into the suggested growth equation. Dimensionless parameters of time and bubble radius characterize the thermal growth behavior well, irrespective of wall condition. The comparison between the result of this study and the previous results shows a good agreement at the thermal growth region. The quantitative analysis for the heat transfer mechanism is conducted with the measured heat flow rate behavior and the bubble growth behavior. The required heat flow rate for the volume change of the observed bubble is about twice as much as the instantaneous heat flow rate supplied from the wall.

Study on the single bubble growth at saturated pool boiling (포화상태 풀비등시 단일기포의 성장에 관한 연구)

  • Kim, Jeong-Bae;Lee, Han-Choon;Oh, Byung-Do;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1933-1938
    • /
    • 2004
  • Nucleate boiling experiments with constant wall temperature of heating surface were performed using R113 for almost saturated pool boiling conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain a constant wall temperature condition and to measure the heat flow rate with high temporal and spatial resolutions. Bubble images during the bubble growth were taken as 5000 frames a sec using a high-speed CCD camera synchronized with the heat flow rate measurements. The geometry of the bubble during growth time could be obtained from the captured bubble images. The bubble growth behavior was analyzed using the new dimensionless parameters for each growth regions to permit comparisons with previous results at the same scale. We found that the new dimensionless parameters can describe the whole growth region as initial and later respectively. The comparisons showed good agreement in the initial and thermal growth regions. The required heat flow rate for the volume change of the observed bubble was estimated to be larger than the instantaneous heat flow rate measured at the wall. Heat, which is different from the instantaneous heat supplied through the heating wall, can be estimated as being transferred through the interface between bubble and liquid even with saturated pool conditions. This phenomenon under a saturated pool condition needs to be analyzed and the data from this study can supply the good experimental data with the precise boundary condition (constant wall temperature).

  • PDF

A Study on Thermal Stability of Unidirectionally Solidified $Al-CuAl_2$ Eutectic Composite (일방향응고시킨 $Al-CuAl_2$공정복합재료의 열적안정성에 관한 연구)

  • Hong, Young-Hwan;Hong, Jong-Hwi
    • Journal of Korea Foundry Society
    • /
    • v.10 no.5
    • /
    • pp.399-407
    • /
    • 1990
  • The effect of thermal cycling and isothermal exposure on the high temperature microstructural stability of unidirectionally solidified $Al-CuAl_2$ eutectic composite has been studied. A coarsening procedures of lamellar eutectic structures were initiated at growth fault region because of diffusion through low angle boundary at this region. It was considered that thermally induced residual stresses produced by thermal cycling were high enough to increase the dislocation density in Al-rich matrix phase. However, it was also considered that dislocations generated by these high thermal stresses were annihilated at high temperature by stress relaxation. Consequently, the thermal cycling up to 1440 cycles between 20 and $520^{\circ}C$ did not affect the microstructural stability.

  • PDF

Effect of aspect ratio on solutally buoyancy-driven convection in mercurous chloride $(Hg_2Cl_2)$ crystal growth processes

  • Kim, Geug-Tae;Lee, Kyoung-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.149-156
    • /
    • 2006
  • For an aspect ratio (transport length-to-width) of 5, Pr = 2.89, Le = 0.018, Pe = 2.29, Cv = 1.11, $P_B$=40 Torr, solutally buoyancy-driven convection $(Gr_s=3.03{\times}10^5)$ due to the disparity in the molecular weights of the component A $(Hg_2Cl_2)$ and B (He) is stronger than thermally buoyancy-driven convection $(Cr_t=1.66{\times}10^4)$. The crystal growth rate is decreased exponentially for $2.5\;{\leq}\;Ar\;{\leq}\;5$, with (1) the linear temperature profile and a fixed temperature difference, (2) the imposed thermal profile, a fixed crystal region and varied temperature difference. This is related to the finding that the effects of side walls tend to stabilize convection in the growth reactor. But, with the imposed thermal profile, a fixed source region and varied temperature difference, the rate is increased far $2\;{\leq}\;Ar\;{\leq}\;3$, and remains nearly unchanged for $3\;{\leq}\;Ar\;{\leq}\;5$.

A Study on Heat Transfer and Film Growth Rate During the III-V MOCVD Processes

  • Ik Tae, Im;MASAKAZU, SUGIYAMA;VOSHIAKI, NAKANO;YUKIHIRO, SHIMOGAKI
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.192-199
    • /
    • 2003
  • Film growth of InP and GaAs using TMIn, TMGa, TBAs and TBP is numerically predicted and compared to the experimental results. To obtain exact thermal boundary conditions at the reactor walls, the gas flow and heat transfer are analyzed for full three-dimensional reactor including outer tube as well as the inner reactor parts. The results indicate that the exact thermal boundary conditions are important to get precise film growth rate prediction since film deposition is mainly controlled by the temperature dependent diffusion. The results also show that thermal diffusion plays an important role in the upstream region.

  • PDF

CREEP-FATIGUE CRACK GROWTH AND CREEP RUPTURE BEHAVIOR IN TYPE 316 STAINLESS STEELS- EFFECT OF HOLD TIME AND AGING TREATMENT

  • Mi, J.W.;Won, S.J.;Kim, M.J.;Lim, B.S.
    • International Journal of Automotive Technology
    • /
    • v.1 no.2
    • /
    • pp.71-77
    • /
    • 2000
  • High temperature materials in service are subjected to mechanical damage due to operating load and metallurgical damage due to operating temperature. Therefore, when designing or assessing life of high temperature components, both factors must be considered. In this paper, the effect of tensile hold time on high temperature fatigue crack growth and long term prior thermal aging heat treatment on creep rupture behavior were investigated using STS 316L and STS 316 austenitic stainless steels, which are widely used for high temperature components like in automotive exhaust and piping systems. In high temperature fatigue crack growth tests using STS 316L, as tensile hold time increased, crack growth rate decreased in relatively short tensile hold time region. In long term aged specimens, cavity type microcracks have been observed at the interface of grain boundary and coarsened carbide.

  • PDF