• Title/Summary/Keyword: Thermal Gradient

Search Result 615, Processing Time 0.028 seconds

Measurement of effective thermal conductivity and permeability on aluminum foam metal (알루미늄 발포금속의 유효열전도도와 침투율의 측정)

  • 백진욱;강병하;김서영;현재민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.185-192
    • /
    • 1999
  • Effective thermal conductivities and pressure-drop-related properties of aluminum foam metals have been measured. The effects of porosity and cell size in the aluminum foam metal are investigated in detail. The porosity of the foam metal, considered in the present study, varies from 0.89 to 0.96 and the cell size from 0.65㎜ to 2.5㎜. The effective thermal conductivity is evaluated by comparing the temperature gradient of the foam metal with that of the thermal conductivity-known material. The pressure drop in the foam metal is measured by a highly precise electric manometer while air is flowing through the aluminum foam metal in the channel. The results obtained indicate that the effective thermal conductivities are found to be increased with a decrease in the porosity while the effective thermal conductivities ire little affected by the cell size at a fixed porosity. However, the pressure drop is strongly affected by the cell size as well as the porosity. It is seen that the pressure drop is increased as the cell size becomes smaller, as expected. The minimum pressure drop is obtained in the porosity 0.94 at a fixed cell size. A new correlation of the pressure drop is proposed based on the permeability and Ergun's coefficient for the aluminum foam metal.

  • PDF

Evaluation of Thermal Stratification Effect in a Long Horizontal Pipeline with Turbulent Natural Convection

  • Park, Man-Heung;Ahn, Jang-Sun;Nam, Seung-Deog
    • Nuclear Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.581-591
    • /
    • 1998
  • Numerical analysis was peformed for the two-dimensional turbulent natural convection for a long horizontal line with different end temperatures. The turbulent model has been applied a standard k-$\varepsilon$ two equation model of turbulence similar to that the proposed by the Launder and Spalding. The dimensionless governing equations are solved by using SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm which is developed using control volumes and staggered grids. The numerical results are verified by comparison with the operating PWR test data. The analysis focuses on the effects of variation of the heat transfer rates at the pipe surface, the thermal conductivities of the pipe material and the thickness of the pipe wall on the thermal stratification. The results show that the heat transfer rate at the pipe surface is the controlling parameter for mitigating of thermal stratification in the long horizontal pipe. A significant reduction and disappearance of the thermal stratification phenomenon is observed at the Biot number of 4.82$\times$10$^{-1}$ . The results also show that the increment of the thermal conductivity and thickness of the wall weakens a little the thermal stratification and somewhat reduces temperature gradient of y-direction in the pipe wall. These effects are however minor, when compared with those due to the variation of the heat transfer rates at the surface of the pipe wall.

  • PDF

The Characteristic Refinement of Poly-Si by Uni-directional Solidification with Thermal Gradient (일방향 응고시 온도 구배에 의한 다결정 실리콘 정련 특성)

  • Jang, Eunsu;Yu, Joon-Il;Park, Dongho;Moon, Byungmoon;Yu, Tae U
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.59.2-59.2
    • /
    • 2010
  • 결정형 태양 전지의 보급화를 위하여 고순도 실리콘을 저렴하게 제조할 수 있는 기술 개발이 필요하다. 본 연구에서는 고순도 실리콘을 경제적으로 제조하기 위하여 대역 정제에 의한 일방향성 응고법을 이용한 정련 연구를 진행하였으며, 응고 속도와 고 액상의 온도 구배가 정련도에 미치는 영향을 분석 하였다. 본 실험에 사용된 일방향 응고장치는 실리콘 용탕이 장입된 도가니 하부의 열 교환기를 통한 냉각에 의해 용탕 하부에서 상부 방향으로의 일방향성 응고가 진행되며, 응고 진행시 용탕의 흔들림에 의한 정련능의 감소를 방지하기 위해 가열 영역이 이동하는 Stober 공정을 채택하였다. 가열 영역은 실리콘 용융을 위한 상부 가열 영역과 응고 진행시 응고부의 온도 제어를 위한 하부 가열 영역으로 구성되어 있으며, 두 가열 영역의 온도 제어를 통해 응고중인 실리콘의 고 액상의 온도 구배를 조절하였다. 일방향 응고에 의한 정련법에서 고 액상의 온도 구배가 증가할수록 2차 수지상의 발달이 감소하고, 주상정의 수지상 형태를 유지하게 되어 고 액 공존영역에서 액상 영역으로의 확산이 원활하게 이루어져 분배계수를 이용한 정련도가 좋아지게 되며, ICP 분석을 통해 온도 구배의 증가에 따라 정련능이 증가하는 양상을 확인 할 수 있었다. 고 액상의 온도 구배의 조절을 통한 공정 시간 대비 정련도의 향상을 통해 결정형 태양전지의 생산성의 증가를 통한 저가화를 이룰 수 있을 것이다.

  • PDF

Fabrication of 6.4 cm single grain $YBa_2$$Cu_3$$O_x$ (6.4cm 크기의 일방향 성장된Y$Ba_2$$Cu_3$$O_x$ 제조)

  • 박병삼;한상철;한영희;정년호;윤희중;김경진;성태현;오제명
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.114-117
    • /
    • 2004
  • We fabricated large single grain YBa$_2$Cu$_3$O$_{x}$ (Y-123) superconductors. The single grain Y-123 was grown by top seeded melt growth (TSMG) method. In a conventional box furnace with uniform temperature distribution, it was very difficult to grow large single grain Y-123 superconductors due to the size limitation in growth. To overcome the size limitation, we applied a radial thermal gradient (lower temperature at sample center and higher temperature on the sample edge) to the TSMG process. In this case, large single grain Y-123 could be easily grown. This is attributed that the liquid of the sample edge was maintained at the high temperature compared to the growth front. Using this method, we successfully fabricated a large single grain Y-123 of 6.4 cm X6.4 cm

  • PDF

Characteristics of the Unidirectionally Solidified Al-Co Alloy (일방향응고시킨 Al-Co 합금의 특성에 관한 연구)

  • Park, Su-Jung;Jun, Hyun-Yong;Lee, Hyun-Kyu
    • Journal of Korea Foundry Society
    • /
    • v.25 no.1
    • /
    • pp.30-35
    • /
    • 2005
  • The structures and mechanical property of the unidirectionally solidified Al-Co eutectic alloy were investigated. Al-Co eutectic alloy was unidirectionally solidified with growth rates(R) between I cm/hr and 10 cm/hr in the induction furnace maintaining the thermal gradient (G) at solid-liquid interface, $32^{\circ}C$/cm. The eutectic microstructure was varied with the growth condition(G/R ratio). When the G/R ratio was larger than $8.5{\times}10^{3}^{\circ}C/cm^{2}/sec$, a lamellar structure was formed, But the G/R ratio was smaller than $8.5{\times}10^{3}^{\circ}C/cm^{2}/sec$, a colony structure was formed. It was found that the interlamellar spacing(${\lambda}$) was dependent on the growth rate(R) with the relationship, ${\lambda}^{2}{\cdot}R=constant$. The microhardness of this eutectic alloy increased with increase in the growth rate.

Thermal Analysis Comparison of IMO with USCG Design Condition for the INGC During the Cool-down Period (급냉각기간에서 IMO설계조건과 USCG 설계조건에 대한 LMGC 화물탱크의 열해석 비교)

  • Lee, Jung-Hye
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1390-1397
    • /
    • 2004
  • This study is concerned with the thermal analysis during the cool-down period of 135,000㎥ class GT-96 membrane type LNG carrier under IMO and USCG design condition. During the cool-down period, the spraying rate for the NG cooling decreases as the temperature of NG falls down from -4$0^{\circ}C$ to -l3$0^{\circ}C$, and the spraying rate for the cooling of the insulation wall increases as the temperature gradient of the insulation wall is large. It was confirmed that there existed the largest temperature decrease at the first barrier and the first insulation, which are among the insulation wall, especially in the top side of the insulation wall under IMO and USCG design condition. Also, as the NG temperature distribution is fixed, the outer temperature condition under the design condition has influence on the temperature variation at the insulation. By the 3-D numerical calculation about the cargo tank and the cofferdam during the cool-down period, the temperature variation in hulls and insulations is precisely predicted under IMO and USCG design condition. From the comparison between two conditions; IMO design condition shows more severe temperature gradient than USCG design condition, therefore, it provides the conservative estimation of the BOG.

Hygro-thermal effects on wave dispersion responses of magnetostrictive sandwich nanoplates

  • Ebrahimi, Farzad;Dabbagh, Ali;Tornabene, Francesco;Civalek, Omer
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.157-167
    • /
    • 2019
  • In this paper, a classical plate model is utilized to formulate the wave propagation problem of magnetostrictive sandwich nanoplates (MSNPs) while subjected to hygrothermal loading with respect to the scale effects. Herein, magnetostriction effect is considered and controlled on the basis of a feedback control system. The nanoplate is supposed to be embedded on a visco-Pasternak substrate. The kinematic relations are derived based on the Kirchhoff plate theory; also, combining these obtained equations with Hamilton's principle, the local equations of motion are achieved. According to a nonlocal strain gradient theory (NSGT), the small scale influences are covered precisely by introducing two scale coefficients. Afterwards, the nonlocal governing equations can be derived coupling the local equations with those of the NSGT. Applying an analytical solution, the wave frequency and phase velocity of propagated waves can be gathered solving an eigenvalue problem. On the other hand, accuracy and efficiency of presented model is verified by setting a comparison between the obtained results with those of previous published researches. Effects of different variants are plotted in some figures and the highlights are discussed in detail.

Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene

  • Moradi-Dastjerdi, Rasool;Behdinan, Kamran
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.529-539
    • /
    • 2019
  • Current paper deals with thermoelastic static and free vibrational behaviors of axisymmetric thick cylinders reinforced with functionally graded (FG) randomly oriented graphene subjected to internal pressure and thermal gradient loads. The heat transfer and mechanical analyses of randomly oriented graphene-reinforced nanocomposite (GRNC) cylinders are facilitated by developing a weak form mesh-free method based on moving least squares (MLS) shape functions. Furthermore, in order to estimate the material properties of GRNC with temperature dependent components, a modified Halpin-Tsai model incorporated with two efficiency parameters is utilized. It is assumed that the distributions of graphene nano-sheets are uniform and FG along the radial direction of nanocomposite cylinders. By comparing with the exact result, the accuracy of the developed method is verified. Also, the convergence of the method is successfully confirmed. Then we investigated the effects of graphene distribution and volume fraction as well as thermo-mechanical boundary conditions on the temperature distribution, static response and natural frequency of the considered FG-GRNC thick cylinders. The results disclosed that graphene distribution has significant effects on the temperature and hoop stress distributions of FG-GRNC cylinders. However, the volume fraction of graphene has stronger effect on the natural frequencies of the considered thick cylinders than its distribution.

Thermal bending analysis of functionally graded thick sandwich plates including stretching effect

  • Mohammed Sid Ahmed Houari;Aicha Bessaim;Smain Bezzina;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.373-384
    • /
    • 2023
  • The main objective of this research work is to present analytical solutions for the thermoelastic bending analysis of sandwich plates made of functionally graded materials with an arbitrary gradient. The governing equations of equilibrium are solved for a functionally graded sandwich plates under the effect of thermal loads. The transverse shear and normal strain and stress effects on thermoelastic bending of such sandwich plates are considered. Field equations for functionally graded sandwich plates whose deformations are governed by either the shear deformation theories or the classical theory are derived. Displacement functions that identically satisfy boundary conditions are used to reduce the governing equations to a set of coupled ordinary differential equations with variable coefficients. The results of the shear deformation theories are compared together. Numerical results for deflections and stresses of functionally graded metal-ceramic plates are investigated.