• 제목/요약/키워드: Thermal Flow Stratification

검색결과 129건 처리시간 0.021초

NUMERICAL ANALYSIS OF THERMAL STRATIFICATION IN THE UPPER PLENUM OF THE MONJU FAST REACTOR

  • Choi, Seok-Ki;Lee, Tae-Ho;Kim, Yeong-Il;Hahn, Dohee
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.191-202
    • /
    • 2013
  • A numerical analysis of thermal stratification in the upper plenum of the MONJU fast breeder reactor was performed. Calculations were performed for a 1/6 simplified model of the MONJU reactor using the commercial code, CFX-13. To better resolve the geometrically complex upper core structure of the MONJU reactor, the porous media approach was adopted for the simulation. First, a steady state solution was obtained and the transient solutions were then obtained for the turbine trip test conducted in December 1995. The time dependent inlet conditions for the mass flow rate and temperature were provided by JAEA. Good agreement with the experimental data was observed for steady state solution. The numerical solution of the transient analysis shows the formation of thermal stratification within the upper plenum of the reactor vessel during the turbine trip test. The temporal variations of temperature were predicted accurately by the present method in the initial rapid coastdown period (~300 seconds). However, transient numerical solutions show a faster thermal mixing than that observed in the experiment after the initial coastdown period. A nearly homogenization of the temperature field in the upper plenum is predicted after about 900 seconds, which is a much shorter-term thermal stratification than the experimental data indicates. This discrepancy may be due to the shortcoming of the turbulence models available in the CFX-13 code for a natural convection flow with thermal stratification.

원전 설계기준 사고시 냉각재계통 부분정체로 인한 비대칭 열유동 혼합해석에 관한 연구 (Asymmetric Thermal-Mixing Analysis due to Partial Loop Stagnation during Design Basis Accident of NPP)

  • 황경모;진태은;김경훈
    • 한국분무공학회지
    • /
    • 제8권1호
    • /
    • pp.23-28
    • /
    • 2003
  • When a cold HPSI (High Pressure Safety Injection) fluid associated with a design basis accident, such as LOCA (Loss of Coolant Accident), enters the cold legs of a stagnated primary coolant loop, thermal stratification phenomena may arise due to incomplete mixing. If the stratified flow enters a reactor pressure vessel downcomer, severe thermal stresses are created in a radiation embrittled vessel wall by local overcooling. Previous thermal-mixing analyses have assumed that the thermal stratification phenomena generated in stagnated loop of a partially stagnated collant loop are neutralized in the vessel downcomer by strong flow from unstagnated loop. On the basis of these reasons, this paper presents the thermal-mixing analysis results in order to identify the fact that the cold plume generated in the vessel downcomer due to the thermal stratification phenomena of the stagnated loop is affected by the strong flow of the unstagnated loop.

  • PDF

금강 백제보 구간 수온성층 형성과 임계유속 관계 (Relationship of the Thermal Stratification and Critical Flow Velocity Near the Baekje Weir in Geum River)

  • 김동민;박형석;정세웅
    • 한국물환경학회지
    • /
    • 제33권4호
    • /
    • pp.449-459
    • /
    • 2017
  • In Geum River of Korea, three multi-purpose weirs were built at the downstream of Daecheong Reservoir during the Four Major River Restoration Project (FMRRP). The weirs have altered the hydraulic characteristics of the river, and consequently transformed the large areas of flowing ecosystem to deep and wide stagnant environment. In every summer, a thermal stratification occurred near the Baekje Weir having mean depth of 4.0 m, and the surface algal blooms dominated by buoyant cyanobacteria have been frequently formed after the FMRRP. The objective of this study was to investigate the relationship between flow velocity and thermal stability of the waterbody using a three-dimensional (3D) hydrodynamic model (EFDC+) after calibration against the thermistor chain data obtained in 2014. A new Sigma-Zed vertical grid system of EFDC+ that minimize the pressure gradient errors was used to better simulate the thermodynamics of the waterbody. The model reasonably simulated the vertical profiles of the observed water temperatures. The vertical mean flow velocity and the Richardson Number (Ri) that represents the stability of waterbody were estimated for various management water levels and flow rates scenarios. The results indicated that the thermal stability of the waterbody is mostly high ($Ri{\gg}0.25$) enough to establish stratification, and largely depend on the flow velocity. The critical flow velocity that can avoid a persistent thermal stratification was found to be approximately 0.1 m/s.

원전 안전주입 배관에서의 In-Leakage 에 의한 열성층 현상에 관한 연구 (A Study on Thermal Stratification Phenomenon due to In-Leakage in the Safety Injection Piping of Nuclear Power Plant)

  • 김광추;박만홍;염학기;김태룡;이선기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1633-1638
    • /
    • 2003
  • In case that in-leakage through the valve disk occurs, a numerical study is performed to estimate on thermal stratification phenomenon in the Safety Injection piping connected with the Reactor Coolant System piping of Nuclear Power Plant. As the leakage flow rate increases, the temperature difference between top and bottom of horizontal piping has the inflection point. In the connection point of valve and piping, the maximum temperature difference between top and bottom was 185K and occurred in the condition of 10 times of standard leakage flow rate. In the connection point of elbow and horizontal piping, the maximum temperature difference was 145K and occurred in the condition of 15 times of standard leakage flow rate. In the vertical piping of Safety Injection piping, the near of connection point between elbow and vertical piping showed the outstanding thermal stratification phenomenon in comparison with another region because of turbulent penetration from Reactor Coolant System piping. In order to prevent damage of piping due to the thermal stratification when in-leakage through the valve disk occurs, the connection points between valve and piping, and the connection points between elbow and piping need to be inspected continually.

  • PDF

Numerical Analysis for Unsteady Thermal Stratified Turbulent Flow in a Horizontal Circular Cylinder

  • Ahn, Jang-Sun;Ko, Yong-Sang;Park, Byeong-Ho;Youm, Hag-Ki;Park, Man-Heung
    • Nuclear Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.405-414
    • /
    • 1996
  • In this paper, the unsteady 2-dimensional turbulent flow model for thermal stratification in a pressurizer surge line of PWR plant is proposed to numerically investigate the heat transfer and flow characteristics. The turbulence model is adapted to the low Reynolds number K-$\varepsilon$ model (Davidson model). The dimensionless governing equations are solved by using the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm. The results are compared with simulated experimental results of TEMR Test. The time-dependent temperature profiles in the fluid and pipe nil are shown with the thermal stratification occurring in the horizontal section of the pipe. The corresponding thermal stresses are also presented. The numerical result for thermal stratification by the outsurge during heatup operation of PWR shows that the maximum dimensionless temperature difference is about 0.83 between hot and cold sections of pipe well and the maximum thermal stress is calculated about 322MPa at the dimensionless time 28.5 under given conditions.

  • PDF

열성층유동 곡관벽에서의 과도온도분포 예측 (Prediction of Transient Temperature Distributions in the Wall of Curved Piping System Subjected to Internally Thermal Stratification Flow)

  • 조종철;조상진;김윤일;박주엽;김상재;최석기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.474-481
    • /
    • 2001
  • This paper addresses a numerical method for predicting transient temperature distributions in the wall of a curved pipe subjected to internally thermal stratification flow. A simple and convenient numerical method of treating the unsteady conjugate heat transfer in the non-orthogonal coordinate systems is presented. The proposed method is implemented in a finite volume thermal-hydraulic computer code based on a cell-centered, non-staggered grid arrangement, the SIMPLEC algorithm, a higher-order bounded convection scheme, and the modified version of momentum interpolation method. Calculations are performed for the transient evolution of thermal stratification in two curved pipes, where the one has thick wall and the other has so thin wall that its presence can be negligible in the heat transfer analysis. The predicted results show that the thermally stratified flow and transient conjugate heat transfer in a curved pipe with a finite wall thickness can be satisfactorily analyzed by the present numerical method, and that the neglect of wall thickness in the prediction of pipe wall temperature distributions can provide unacceptably distorted results.

  • PDF

Comparative study of CFD and 3D thermal-hydraulic system codes in predicting natural convection and thermal stratification phenomena in an experimental facility

  • Audrius Grazevicius;Anis Bousbia-Salah
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1555-1562
    • /
    • 2023
  • Natural circulation phenomena have been nowadays largely revisited aiming to investigate the performances of passive safety systems in carrying-out heat removal under accidental conditions. For this purpose, assessment studies using CFD (Computational Fluid Dynamics) and also 3D thermal-hydraulic system codes are considered at different levels of the design and safety demonstration issues. However, these tools have not being extensively validated for specific natural circulation flow regimes involving flow mixing, temperature stratification, flow recirculation and instabilities. In the present study, an experimental test case based on a small-scale pool test rig experiment performed by Korea Atomic Energy Research Institute, is considered for code-to-code and code-to-experimental data comparison. The test simulation is carried out using the FLUENT and the 3D thermal-hydraulic system CATHARE-2 codes. The objective is to evaluate and compare their prediction capabilities with respect to the test conditions of the experiment. It was observed that, notwithstanding their numerical and modelling differences, similar agreement results are obtained. Nevertheless, additional investigations efforts are still needed for a better representation of the considered phenomena.

수축열조의 온도 계층화에 대한 수치해석 및 실험적 연구 (Numerical Analysis and Experiments for the Stratification of the Hot Water Storage)

  • 양윤섭;백남춘;김홍제;유제인;이준식
    • 설비공학논문집
    • /
    • 제5권3호
    • /
    • pp.187-197
    • /
    • 1993
  • In this study, the numerical analysis and experiments of the hot water storage using the thermal stratification techniques were carried out. The CPU time for a typical run of the the thermal stratification up to 900 seconds took one week for a $81{\times}31$ mesh size and 10 days for a $118{\times}31$ mesh size, respectively, for a cylindrical shape of the storage. In the initial stage, the numerical results were in favorable agreement with the experimental results, but it showed that the temperature gradients in the storage decreased gradually with time. It was also found that the increase of ${\delta}t$ decreased the convergent speed due to the intensive fluctuation of the velocity field in every iteration. The increase of numbers of grids is projected to forecast a more accurate result, but it made the computing time longer and woul slow down convergence. At the experiments of the flow visualization, it was confirmed that the thermal stratification was apparently built up due to the installation of diffuser at the lower part of the storage. Thus, the thermal performance of the storage could be improved by installing the diffusers at the inlet and outlet.

  • PDF

원형 T분기배관 내 누설유동의 열성층화와 난류침투에 관한 전산해석적 연구 (Numerical Analysis of Thermal Stratification and Turbulence Penetration into Leaking Flow in a Circular Branch Piping)

  • 한성민;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1833-1838
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system(ECCS) is furnished at reactor coolant system(RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can be occurred due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack(TFC) accident. In the present study, when the turbulence penetration occurs in the branch piping, the maximum temperature differences of fluid at the pipe cross-sections of the T-branch with thermal stratification are examine

  • PDF

NUMERICAL ANALYSIS FOR UNSTEADY THERMAL STRATIFIED FLOW WITH HEAT TRACING IN A HORIZONTAL CIRCULAR CYLINDER

  • Jeong, Ill-Seok;Song, Woo-Young;Park, Man-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.304-309
    • /
    • 1997
  • A method to mitigate the thermal stratification flow of a horizontal pipe line is proposed by heating external bottom of the pipe with electrical heat tracing. Unsteady two dimensional model has been used to numerically investigate an effect of the external Denting to the thermally stratified flow. The dimensionless governing equations are solved by using the control volume formulation and SIMPLE algorithm. Temperature distribution, streamline profile and Nusselt numbers of fluids and pipe walls with time are analyzed in case of externally heating condition. no numerical result of this study shows that the maximum dimensionless temperature difference between the hot and the cold sections of pipe inner wall is 0.424 at dimensionless time 1,500 ann the thermal stratification phenomena is disappeared at about dimensionless time 9,000. This result means that external heat tracing can mitigate the thermal stratification phenomena by lessening $\Delta$ $T_{ma}$ about 0.1 and shortening the dimensionless time about 132 in comparison with no external heat tracing.rnal heat tracing.

  • PDF