• 제목/요약/키워드: Thermal Fault

검색결과 205건 처리시간 0.024초

다양한 선재 조합에 따른 이종 초전도 스위치의 특성 실험 및 분석 (Experimental and Analytical Studies on the Characteristics of Fast Switch in Combinations of Various Superconducting Tapes)

  • 이지호;김영재;나진배;최석진;장재영;황영진;김진섭;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권1호
    • /
    • pp.31-35
    • /
    • 2011
  • A Hybrid Fault Current Limiter(FCL) which has more advantages in fast response and thermal characteristics than a simple resistive FCL had been proposed by our group. The Hybrid FCL consists of a resistive FCL for the magnitude of the first peak of fault current, and a fast switch for detecting fault current and generating the repulsive force within a cycle in fault situation. In ideal case, the impedance of the fast switch wound with two other kinds of HTS tape is negligibly zero in normal operation. But, during the fault situation, each HTS tape has different quench characteristics because of asymmetric current distribution. And this phenomenon causes effective flux and this flux opens the switch through the repulsive force applied to a metal plate of the fast switch. The magnitude of the repulsive force affects the switching characteristics of the fast switch. It should be large enough to raise the metal plate up. Otherwise the arc re-out break which are caused by not enough repulsive force to raise the metal plate up can cause unintended operation of the fast switch. In this paper, the numerical calculation of the repulsive force applied to the metal plate of the fast switch in various combinations of HTS tapes was performed by using the short-circuit test and finite element method.

단일추진제 로켓 엔진 어셈블리를 위한 우주 공간에서의 과실 방지 설계 (Faultproof Design in Space for Monopropellant Rocket Engine Assembly)

  • 한조영;김정수
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1377-1384
    • /
    • 2003
  • An analysis has been performed for active thermal control of the KOMPSAT monopropellant rocket engine assembly, i.e., dual thruster module(DTM). The main efforts of this work have been directed at determining proper heater sizes for propellant valves and catalyst beds necessary to maintain their temperatures within specified temperature ranges under KOMPSAT environment and operational conditions. The TAS incorporated with TRASYS thermal radiation analyzer was used to establish a complete heat transfer model which allows to predict the DTM temperature as a function of time. The thermal analysis has been performed in transient mode to verify the appropriate power for catalyst bed heaters necessary to increase catalyst bed temperature to the required value within a specified period of time. Similar analysis has been executed to validate the heater power for the thermostatically controlled primary and redundant heater circuits used to prevent hydrazine freezing, i.e., single fault. Moreover the effect of the radiative property of thermal control coating of heat shield was examined. Thruster firing condition was also simulated for the heat soakback condition. As a consequence, all thermal analysis results for DTM satisfactorily met the thermal requirements for the KOMPSAT DTM under the worst case average voltage, i.e. 25 volt.

Resistance Distribution in Thin Film Type SFCL Elements with Shunt Layers of Different Thicknes

  • Kim, Hye-Rim;Hyun, Ok-Bae;Lee, Seung-Yup;Yu, Kwon-Kyu;Kim, In-Seon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.41-45
    • /
    • 2003
  • Resistance distribution in thin film type SFCL elements of different shunt layer thickness was investigated. The 300 nm thick film of 2 inch diameter was coated with a gold layer and patterned into 2 mm wide meander lines. The shunt layer thickness was varied by ion milling the shunt layer with Ar ions, and also by having the shunt layer grown in different thickness. The SFCL element was subjected to simulated AC fault current for measurements. It was immersed in liquid nitrogenduring the experiment. The resistance distribution was not affected by the shunt layer thickness at applied voltages that brought the temperature of the elements to similar values. This result could be explained with the concept of heat transfer from the film to the surroundings. The resistance distribution was independent of the shunt layer thickness because thick sapphire substrates of high thermal conductivity dominated the thermal conductance of the elements.

과냉 액체질소 내에서 순간적 열확산 실험 (Thermal diffusion experiment of impulsive heat in subcooled liquid nitrogen)

  • 최진혁;하찬준;변정주;장호명;김호민;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권1호
    • /
    • pp.65-70
    • /
    • 2006
  • Transient heat transfer caused by an impulsive heating in subcooled liquid nitrogen is investigated experimentally. This study is part of out ongoing efforts directed to a stable cryogenic cooling system lot superconducting fault current limiters (SFCL). A thin heater attached by epoxy on one surface of a GFRP plate is immersed in liquid-nitrogen bath at temperatures between 77 K and 55 K. A strong heat flux up to $150W/cm^2$ is generated lot 100 ms, and the temperature of the heater sulfate is measured as a function of time. The behavior of bubbles on the heating surface can be explained by comparing the measured temperature history for vertical and two horizontal (up and down) orientations. It is concluded that the subcooling of liquid nitrogen below 70 K is very effective in suppressing bubbles, resulting in better thermal protection and faster recovery from an impulsive heat.

가스차단기 전류영점영역에서의 열유동특성에 관한 연구 (Thermal Flow Characteristics of Gas Circuit Breakers near Current Zero Period)

  • 이종철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1772-1774
    • /
    • 2004
  • Because the physics occurring during an interruption process is not well known, it is not easy to analyze the characteristics of a self-blast circuit breaker neither theoretically nor experimentally. Fortunately the available computational power and the numerical method improved recently make it possible to predict an interruption process as precisely and fast as possible. Therefore many researches using computational methods have been done for the interruption process of interrupters and applied to extend the information such as thermal and dielectric reignition. In this paper, we have simulated the interruption process of SF6 self-blast circuit breakers with the arc plasma during the fault interruption of a 10 kA current. The CFD program used here is coupled with the electromagnetic field analysis, the radiation model and the effects of turbulence. Through this work, we have get further information about the thermal performance as well as the behavior of the arc. The results have been compared with the measured arc voltage.

  • PDF

3상 초전도케이블의 불평형 부하운전시 열.전류 저항에 의한 운전특성연구 (A Study on the operational characteristics of Thermal.Current Resistance of 3 phase HTS Cable under Unbalanced load operation)

  • 이근준;황시돌;이현철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.189-1-190-1
    • /
    • 2008
  • A high temperature superconducting(HTS) power cable is available for high capacity current in normal condition. But resistance was appeared to operate unbalance load by thermal current characteristic. This characteristic of HTS power cable used to design for unstated condition. And than, It used to understand and analyze characteristic of power cable thermal and critical current. This study appeared that quench resistance reason from shield and former current rise to superconductor(SC) current. The resistance of SC occurred that the cable temperature rise to fault current after decreased critical current. The quench resistance of SC increased in temperature or decreased in critical current. So the quench resistance of SC correlated with resistance of both shield and former current. It need to sufficiently influenced the parameters of HTS cable design.

  • PDF

변압기 열열화 모의 고장어 대한 유중가스 분포연구 (A study on gas dissolved distribution in oil for simulated transformer thermal faults)

  • 선종호;이상화;김광화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1800-1802
    • /
    • 2003
  • This paper describes a study on gas dissolved distribution in oil for simulated transformer thermal faults. Experimental chamber was setup for simulation of transformer thermal faults or discharge in oil with or without insulation paper. The experimental results showed that dissolved gases in oil excluding the paper did not evolved upto $150^{\circ}C$. Hereafter the planned gas dissolved analysis will be continuously carried out for transformer fault conditions with or without insulation paper related to water absorption, arc and partial discharge.

  • PDF

Application of SFCL on Bus Tie for Parallel Operation of Power Main Transformers in a Fuel Cell Power Systems

  • Chai, Hui-Seok;Kang, Byoung-Wook;Kim, Jin-Seok;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2256-2261
    • /
    • 2015
  • In the power plant using high temperature fuel cells such as Molten Carbonate Fuel Cell(MCFC), and Solid Oxide Fuel Cell(SOFC), the generated electric power per area of power generation facilities is much higher than any other renewable energy sources. - High temperature fuel cell systems are capable of operating at MW rated power output. - It also has a feature that is short for length of the line for connecting the interior of the generation facilities. In normal condition, these points are advantages for voltage drops or power losses. However, in abnormal condition such as fault occurrence in electrical system, the fault currents are increased, because of the small impedance of the short length of power cable. Commonly, to minimize the thermal-mechanical stresses on the stack and increase the systems reliability, we divided the power plant configuration to several banks for parallel operation. However, when a fault occurs in the parallel operation system of power main transformer, the fault currents might exceed the interruption capacity of protective devices. In fact, although the internal voltage level of the fuel cell power plant is the voltage level of distribution systems, we should install the circuit breakers for transmission systems due to fault current. To resolve these problems, the SFCL has been studied as one of the noticeable devices. Therefore, we analyzed the effect of application of the SFCL on bus tie in a fuel cell power plants system using PSCAD/EMTDC.

Fault Current Limiting Characteristic of Non-inductively Wound HTS Magnets in Sub-cooled $LN_2$ Cooling System

  • Park Dong-Keun;Ahn Min-Cheol;Yang Seong-Eun;Lee Chan-Joo;Seok Bok-Yeol;Yoon Yong-Soo;Ko Tae-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권2호
    • /
    • pp.29-32
    • /
    • 2006
  • An advanced superconducting fault current limiter (SFCL) using $high-T_c$ superconducting (HTS) wire has been developed. The SFCL has a non-inductively wound magnet for reducing loss in normal state. Two types of non-inductively wound magnets, the solenoid type and the pancake type, were designed and manufactured by using Bi-2223 wire in this research. Short-circuit tests of the magnets were performed in sub-cooled $LN_2$ cooling system of 65 K. The magnets are thermally more stable and have a higher critical current in 65 K sub-cooled $LN_2$ cooling system than in 77 K saturated one. Because the resistivity of matrix at 65 K is lower than the resistivity at 77 K, the magnets generate a small resistance to reduce the fault current when the quench occurs. The magnets could limit the fault current to low current level with such a small resistance. The current limiting characteristic of the magnets was analyzed from the test result. The solenoid type was wound in parallel to make it non-inductive. The pancake type was also connected in parallel to be compared with the solenoid type in the same condition. The solenoid type was found to have a good thermal stability compared with the pancake type. It also had as large resistance as the pancake type to limit the fault current in sub-cooled $LN_2$ cooling system.

전압 및 주파수 변화에 따른 저압 콘덴서 열 분포 해석 (Analysis for Thermal Distribution of Low-voltage Condenser by the Variance of Voltage & Frequency)

  • 김종겸
    • 조명전기설비학회논문지
    • /
    • 제24권4호
    • /
    • pp.43-49
    • /
    • 2010
  • 콘덴서는 유도성 부하의 늦은 역률 보상으로도 사용되며, 비선형 부하에서 발생하는 고조파를 저감하기 위해 리액터에 직렬로 연결하여 사용되기도 한다. 전압, 전류의 증가와 열의 발생은 콘덴서 수명에 많은 영향을 준다. 전압이 증가할 경우 전류가 증가하고, 주파수의 증가도 전류의 증가로 이어지기 때문에 전압과 주파수의 증가는 바로 열의 증가로 콘덴서 절연에 스트레스로 작용하여 고장의 원인을 제공할 수 있다. 본 연구에서는 전압의 크기와 주파수를 변화시킬 경우 콘덴서에서 발생하는 열의 분포도를 열화상 카메라로 측정하였다. 측정결과 전압과 주파수의 증가는 높은 열을 발생시켜 콘덴서의 수명을 단축시키는 요소로 작용함을 확인할 수 있었다.