• Title/Summary/Keyword: Thermal Fatigue

Search Result 573, Processing Time 0.024 seconds

A Study of Two-Mode Failure Model for Crystalline Si Photovoltaic Module (실리콘 태양전지 모듈의 two-mode failure 모델의 연구)

  • Choi, Ki Young;Oh, Won Wook;Kang, Byung Jun;Kim, Young Do;Tark, Sung Ju;Kim, Donghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.62.2-62.2
    • /
    • 2011
  • To guarantee 20-25 years to the lifetime of the PV modules without failure, reliability test of the module is very important. Field-aged test of the outdoor environment is required. However, due to time constraints, accelerated testing is required to predict the lifetime of PV modules and find causes of failure. Failure is caused by many complex phenomena. In this study, we experimented two accelerated tests about corrosion and fatigue, respectively. First, temperature cycling test for fatigue were tested and Coffin-Manson equation was analyzed. Second, damp heat test for corrosion were tested and Eyring equation were analyzed. Finally, using two-mode failure model, we suggest a new lifetime model that analyze the phenomenon by combining two kinds of data.

  • PDF

An Experimental Study of Class Fiber Sheet-reinforced Asphalt Pavement (유리섬유 시트 보강 아스팔트포장 내구성 증진에 관한 실험적 연구)

  • 조삼덕;이대영;김진환;김남호
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.13-19
    • /
    • 2004
  • The major distress types in the domestic asphalt pavement are fatigue cracking, reflection cracking, thermal cracking, and rutting. To decrease the pavement distress by reinforcing asphalt pavement with reinforcement interlayer in geosynthetics to the traditional pavement systems can improve these problems. This study conducted laboratory test with asphalt pavement reinforced by glass fiber sheet to fix systematically geosynthetic asphalt pavement system. Laboratory tests like wheel tracking test and crack resistance test are conducted to analyze the controlling effect of glass fiber sheet on cracking and rutting of asphalt pavement.

A Fatigue Analysis of the Common Stand in a Steel Mill through the Evaluation of Thermal Effects (열영향 평가를 통한 제철공장 공동가대의 피로해석)

  • Park, Y.K.;Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.90-98
    • /
    • 2006
  • 본 연구에서는 체철공장에서 래이들 카의 매우 높은 열에 주기적으로 빈번히 노출되는 공동가대의 열적 피해에 대한 체계적인 평가를 수행하였다 먼저 실험과 함께 유한요소법을 사용한 열해석이 수행되었다. 기존 공동가대와 향후 설치될 신 공동가대 모두에 대한 적합한 기준을 검증하기위하여 가장 심각한 상태에 대한 열평가가 포함되었다. 또한 공동가대에 적합한 방열판의 설계를 위하여 실험결과에 근거한 수치해석이 사용되었다. 마지막으로 새로 설치될 공동가대의 안전성과 내구성을 평가하기위한 피로해석을 수행하였다. 6m 신형공동가대의 열응력해석 및 피로해석 결과 기존 공동가대보다는 취약하나 설치 및 사용에는 문제가 없음을 확인하였다.

  • PDF

A Study on Structural Analysis for Aircraft Gas Turbine Rotor Disks Using the Axisymmetric Boundary Integral Equation Method (축대칭 경계적분법에 의한 항공기 가스터빈 로터디스크 구조해석에 관한 연구)

  • Kong, Chang-Duk;Chung, Suk-Choo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2524-2539
    • /
    • 1996
  • A design process and an axisymmetric boundary integral equation method for precise structural analysis of the aircraft gas turbine rotor disk were developed. This axisymmetric boundary integral equation method for stress and steady-state thermal analysis was improved in solution accuracy by appling an implicit technique for Cauchy principal value evaluation, a subelement technique for weak singular integral evaluation and a double exponentical integral technoque for internal point solution near boundary surfaces. Stresses, temperatures, low cycle fatigue lifes and critical speeds for the turbine rotor disk of the thrust 1421 N class turbojet engine were analysed in a pratical calculation model problem.

Development of Strength Evaluation Methodology for Independent IMO TYPE C Tank with LH2 Carriers

  • Beom-Il, Kim ;Kyoung-Tae Kim;Shafiqul Islam
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.87-102
    • /
    • 2024
  • Given the inadequate regulatory framework for liquefied hydrogen gas storage tanks on ships and the limitations of the IGC Code, designed for liquefied natural gas, this study introduces a critical assessment procedure to ensure the safety and suitability of such tank designs. This study performed a heat transfer analysis for boil-off gas (BOG) calculations and established separate design load cases to evaluate the yielding and buckling strength. In addition, the study assessed methodologies for both high-cycle and low-cycle fatigue assessments, complemented by comprehensive structural integrity evaluations using finite element analysis. A comprehensive approach was developed to assess the structural integrity of Type C tanks by conducting crack propagation analysis and comparing these results with the IGC Code criteria. The practicality and efficacy of these methods were validated through their application on a 23K-class liquefied hydrogen carrier at the concept design stage. These findings may have important implications for enhancing safety standards and regulatory policies.

A Study on Safety Estimation of Railroad Wheel (컨테이너 철도차륜의 안전성 평가에 관한 연구)

  • Lee, Dong-Woo;Kim, Jin-Nam;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1178-1185
    • /
    • 2010
  • Recently, high speed of container freight cars is causing fatigue damage of wheel. Sudden failure accidents cause a lot of physical and human damages. Therefore, damage analysis for wheel prevents failure accident of container freight car. Wheel receives mechanical and thermal loads at the same time while rolling stocks are run. The mechanical loads applied to wheel are classified by the horizontal load from contact of wheel and rail in curve line section and by the vertical force from rolling stocks weight. Also, braking and deceleration of rolling stocks cause repeated thermal load by wheel tread braking. Specially, braking of rolling stocks is frictional braking method that brake shoe is contacted in wheel tread by high breaking pressure. Frictional heat energy occurs on the contact surface between wheel tread and brake shoe. This braking converts kinetic energy of rolling stocks into heat energy by friction. This raises temperature rapidly and generates thermal loads in wheel and brake shoe. There mechanical and thermal loads generate crack and residual stress in wheel. Wetenkamp estimated temperature distribution of brake shoe experimentally. Donzella proposed fatigue life using thermal stress and residual stress. However, the load applied to wheel in aforementioned most researches considered thermal load and mechanical vertical load. Exact horizontal load is not considered as the load applied to wheel. Therefore, above-mentioned loading methods could not be applied to estimate actual stress applied to wheel. Therefore, this study proposed safety estimation on wheel of freight car using heat-structural coupled analysis on the basis of loading condition and stress intensity factor.

Technology of Inspection and Real-time Displacement Monitoring on Critical Pipe for Power Plant (발전용 고온 배관의 점검 및 실시간 변위감시 기술)

  • Hyun, Jung-Seob;Heo, Jae-Sil;Cho, Sun-Young;Heo, Jeong-Yeol;Lee, Seong-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1177-1186
    • /
    • 2009
  • High temperature steam pipes of thermal power plant are subject to a severe thermal range and usually operates well into the creep range. Cyclic operation of the plant subjects the piping system to mechanical and thermal fatigue damages. Also, poor or malfunctional supports can impose massive loads or stress onto the piping system. In order to prevent the serious damage and failure of the critical piping system, various inspection methods such as visual inspection, computational analysis and on-line piping displacement monitoring were developed. 3-dimensional piping displacement monitoring system was developed with using the aluminum alloy rod and rotary encoder sensors, this system was installed and operated on the high temperature steam piping of "Y" thermal power plant successfully. It is expected that this study will contribute to the safety of piping system, which could minimize stress and extend the actual life of critical piping.

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants

  • Dong-Hwan;Byung-Min;Chung-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.5-13
    • /
    • 2004
  • This study explains the effects of lubricant and surface treatment on the life of hot forging dies. The thermal load and thermal softening, that occur when there is contact between the hotter billet and the cooler dies in hot forging, cause wear, thermal cracking and fatigue, and plastic deformation. Because the cooling effect and low friction are essential to the long life of dies, the proper selection of lubricant and surface treatment is very important in hot forging process. The two main factors that decide friction and heat transfer conditions are lubricant and surface treatment, which are directly related to friction factor and surface heat transfer coefficient. Experiments were performed for obtaining the friction factors and the surface heat transfer coefficients in different lubricants and surface treatments. For lubrication, oil-base and water-base graphite lubricants were used, and ion-nitride and carbon-nitride were used as surface treatment conditions. The methods for estimating die service life that are suggested in this study were applied to a finisher die during the hot forging of an automobile part. The new techniques developed in this study for estimating die service life can be used to develop more feasible ways to improve die service life in the hot forging process.

Properties of Styrene-Butadiene Rubber Nanocomposites Reinforced with Carbon Black, Carbon Nanotube, Graphene, Graphite

  • Song, Sung-Ho;Kwon, O-Seok;Jeong, Ho-Kyun;Kang, Yong-Gu
    • Korean Journal of Materials Research
    • /
    • v.20 no.2
    • /
    • pp.104-110
    • /
    • 2010
  • The characteristics of all polymer composites containing carbon materials are determined by four factors: component properties, composition, structure and interfacial interactions. The most important filler characteristics are particle size, size distribution, specific surface area and particle shape. As a consequence, in this paper we discuss the aspects of the mechanical, electrical and thermal properties of composites with different fillers of carbon black, carbon nanotube (CNT), graphene and graphite and focus on the relationship between factors and properties, as mentioned above. Accordingly, we fabricate rubber composites that contain various carbon materials in carbon black-based and silica based-SBR matrixes with dual phase fillers and use scanning electron microscopy, Raman spectroscopy, a rhometer, an Instron tensile machine, and a thermal conductivity analyzer to evaluate composites' mechanical, fatigue, thermal, and electronic properties. In mechanical properties, hardness and 300%-modulus of graphene-composite are sharply increased in all cases due to the larger specific surface. Also, it has been found that the thermal conductivity of the CNT-composite is higher than that of any of the other composites and that the composite with graphene has the best electrical properties.

Stress distribution of near the interface on high temperature fatigue in ceramic/metal bonded joints (세라믹/금속접합재의 고온피로에 따른 접합계면의 응력분포)

  • 박영철;허선철;윤두표;김광영
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.106-119
    • /
    • 1996
  • The ceramic has various high mechanical properties such as heat, abrasion, corrosion resistance and high temperature strength compared with metal. It also has low speciffic weight, low thermal expansibillity, low thermal conductivity. However, it could not be used as structural material since it is brittle and difficult for the machining. Therefore, there have been many researches to attempt to join ceramic with metal which is full of ductillity in order to compensate the weakness of ceramic.The problem is that residual stress develops around the joint area while the ceramic/metal joint material is cooled from high joining temperature to room temperature due to remarkable difference of thermal expansion coefficients between ceramic and metal. Especially, the residual stress at both edges of the specimen reduces the strngth of joint to a large amount by forming a singular stress field. In this study, two dimensional finite element method is attempted for the thermal elastic analysis. The joint residual stress of ceramic/metal developed in the cooling process is investigated and the change of joint residual stress resulted from the repetitive heat cycle is also examined. In addition, it is attempted to clarify the joint stress distribution of the case of tensile load and of the case of superposition of residual stress and actual loading stress.

  • PDF