• Title/Summary/Keyword: Thermal Errors of the Spindle

Search Result 18, Processing Time 0.024 seconds

Measurement of Spindle Thermal Errors in a Machine Tool Using Hemispherical Ball Bar Test (반구상의 볼바측정을 통한 스핀들 열변형 오차 측정)

  • Yang, Seung-Han;Kim, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1359-1367
    • /
    • 2001
  • Improvement of machine tool accuracy is an essential part of quality control in manufacturing process. Among of all the errors of a particular machine tool, the thermal errors of the spindle have a notably significant effect on machining accuracy and have a direct influence upon both the surface finish and geometric shape of the finished workpiece. Therefore, this paper proposed new measurement method for thermal errors of the spindle in machine tools. The thermal errors are measured by a ball bar system instead of capacitance sensor system. The novel measurement method using ball bar system is more efficient, easier to use than conventional measurement system. And also the ball bar system is possible to measure both geometric errors and thermal errors at the same time.

Thermal Error Measurement and Modeling Techniques for the 5 Degree of Freedom(DOF) Spindle Unit Drifts in CNC Machine Tools (CNC 공작기계 스핀들 유닛의 5자유도 열변형 오차측정 및 모델링 기술)

  • Park, Hui-Jae;Lee, Seok-Won;Gwon, Hyeok-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1343-1351
    • /
    • 2000
  • Thermally induced errors have been significant factors affecting the machine tool accuracy. In this paper, the spindle thermal error has been focused, where the 5 degree of freedom thermal error components are considered. An effective measurement system has been devised for the 5 DOF thermal errors, consisting of gap sensors and thermocouples around the micro-computer interfaced environment. Several thermal error modeling techniques are also implemented for the thermal error prediction: multiple linear regression, neural network and system identification methods, etc. The performance of the thermal error modeling techniques is evaluated and compared, giving the system identification method as the optimum model having the least deviation. The developed system for the thermal error measurement and modeling was practically applied to a CNC machining center, and the spindle thermal errors were effectively compensated around the micro computer-machine tool interfaced networks. The machine tool accuracy was improved about 4-5 times typically.

Research on the Experiment Methods for the Compensation of Thermal Distortion of Machine Tool Spindle (공작기계 주축 열변형 보정을 위한 실험방법에 관한 연구)

  • 고태조;김희술;김형식;김선호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.375-379
    • /
    • 1997
  • Thermal drift of the machine tool spindle due to temperature increase dominates the major source of the machine tool error. To compensate the thermal errors, software based error correction methods could be implemented. In th~s case, we need model to map the relationship between temperature and thermal distortion. Traditionally, two or three different methods have been trled: step increase of spindle speed, constant, random. The latter two methods are described in the document of ISOlDIS230-3. In this research, three different methods were verified through the experiments from the viewpoint of compensation of thermal distortion. Constant spindle speed turned out good enough for monitoring the behavior of the thermal drift and modeling the relationship between temperature and thermal distortion.

  • PDF

Prediction System of Thermal Errors Implemented on Machine Tools with Open Architecture Controller (개방형 CNC를 갖는 공작기계에 실장한 열변형량 예측 시스템)

  • Kim, Sun-Ho;Ko, Tae-Jo;Ahn, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.52-59
    • /
    • 2008
  • The accuracy of the machine tools is degraded because of thermal error of structure due to thermal variation. To improve the accuracy of a machine tools, measurement and prediction of thermal error is very important. The main part of thermal source is spindle due to high speed with friction. The thermal error of spindle is very important because it is over 10% in total thermals errors. In this paper, the suitable thermal error prediction technology for machine tools with open architecture controller is developed and implemented to machine tools. Two thermal error prediction technologies, neural network and multi-linear regression, are investigated in several methods. The multi-linear regression method is more effective for implementation to CNC. The developed thermal error prediction technology is implemented on the internal function of CNC.

Real time compensation for quasistatic errors of a horizantal machining center (수평 머시닝 센터의 준 정적 오차의 실시간 보정)

  • Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.154-162
    • /
    • 1997
  • A real time error compensation system was developed to improve the quasistatic volumetric accuracy of a machining center by using sensing, metrology, modeling, and computer control techniques. Including thermal errors, 32 error components are formulated in the time-space domain. Fifteen thermal sensors are used to characterize the temperature field of the machine. A compensation controller based on the IBM/PC has been linked with a CNC controller to compensate for machine errors in real time. The maximum linear displacement error in 4 body diagonals were reduced from 140 ${\mu}m$ to 34.5${\mu}m$ with this compensation system, and the spindle thermal drift in space was reduced from 147.3 ${\mu}m$ to 16.8 ${\mu}m$.

  • PDF

Thermal Deformation Characteristics of the Adaptive Machine Tools under Change of Thermal Environment (열적 환경변화에 의한 공작기계의 구조적 특성)

  • 이재종;이찬홍;최대봉;박현구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1023-1027
    • /
    • 2000
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF

Measurement of the Volumetric Thermal Errors for CNC Machining Center Using the Star-type-styluses Tough Probe

  • Lee, Jae-Jong;Yang, Min-Yang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.111-117
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models the thermal errors for error analysis and develops an on-the-machine measurement system by which the volumetric errors are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments show that the developed system provides a high measuring accuracy, with repeatability of $\pm$2$\mu\textrm{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be also improved by using the developed measurement system when the spherical ball artifact is mounted on a modular fixture.

  • PDF

Characteristics Analysis of Thermal Deformation for Machine Tools with respect to Operating Conditions (작업조건에 따른 공작기계의 열변형 특성 해석)

  • 이재종;최대봉;박현구;곽성조;박홍석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.449-453
    • /
    • 2000
  • In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to analyze the thermal characteristics under several operating conditions, experiments performed with the touch probe unit and five gap sensors on the vertical and horizontal machining centers.

  • PDF

Modeling and Measurement of Thermal Errors for Machining Center using On-Machine Measurement System (기상계측 시스템을 이용한 머시닝센터의 열변형 오차 모델링 및 오차측정)

  • 이재종;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.120-128
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of $\pm$2${\mu}{\textrm}{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be improved by using the developed measurement system when the spherical ball artifact is mounted on the modular fixture.

  • PDF

Compensation of Thermal Errors for the CNC Machine Tools (II) - Analysis of Error Compensation Algorithm for the PC-NC Controller - (CNC 공작기계의 열변형 오차 보정 (II) - PC-NC제어기용 오차보정 알고리즘 분석 -)

  • 이재종;최대봉;박현구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.214-219
    • /
    • 2001
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. In this study, the compensation device and temperature-based algorithm have been presented in order to compensate thermal error of machine tools under the real-time. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF