• Title/Summary/Keyword: Thermal Equipment

Search Result 774, Processing Time 0.025 seconds

30 Magnetic Analysis on Temperature Rise Resulting from Induced Eddy current In Gas Insulated Switchgear (3차원 자계해석을 통한 GIS 모선의 와전류에 의한 온도 상승)

  • Lee, B.W.;Sohn, J.M.;Kang, J.S.;Seo, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2274-2276
    • /
    • 1999
  • In this work, temperature rise and eddy current distribution on the enclosure and conductor of 3 pole gas insulated switchgear were investigated using analytical and experimental measures. The design of the diameters of the conductors and the enclosures of a meal clad gas insulated switchgear is primarily based on the insulation requirements. It is very difficult problem to predict the temperature rise of enclosed switchgear due to the complexity of the phenomena of heat transfer and existence of eddy current loss. To overcome this situations, we focused on the eddy current distribution on the enclosure of switchgear caused by high current 3 pole conductor as a fundamental basis. The experimental results about temperature distribution of 3 pole gas insulated switchgear were reported and measurements are compared with predictions of three-dimensional thermal model for eddy current analysis. As a result, three dimensional numerical analysis found to be in close relationship with experimental results and thermal model is efficient to predict the abnormal temperature rise in switchgear.

  • PDF

An investigation into the thermo-elasto-hydrodynamic effect of notched mechanical seals

  • Meng, Xiangkai;Qiu, Yujie;Ma, Yi;Peng, Xudong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2173-2187
    • /
    • 2022
  • A 3D thermo-elasto-hydrodynamic model is developed to analyze the sealing performance of a notched mechanical seal applied in the reactor coolant pump. In the model, the generalized Reynolds equation, the energy equation coupled with notch heat balance equation, the heat conduction equations, and the deformation equations of the sealing rings are iteratively solved by the finite element method. The film pressure and temperature distribution are obtained, and the deformation of the sealing rings is revealed to study the mechanism of the notched mechanical seals. A parameterized study is conducted to analyze the sealing performance under different operating conditions. As a comparison, the sealing performance of non-notched seals is also studied. The results show that the hydrostatic effect is dominant in the load-carrying capacity of the fluid film due to the radial mechanical and thermal deformations. The notch can cool the fluid film and influence the thermal deformation of seal rings. The sealing performance is sensitive to the pressure difference, ambient temperature, and rotational speed. It is suggested to set the notches on the softer sealing rings to acquire the greater hydrodynamic effect. Compared with the non-notched, the notched end face holds a better lubrication performance, especially under lower rotational speed.

Low Temperature Thermal Desorption (LTTD) Treatment of Contaminated Soil

  • Alistair Montgomery;Joo, Wan-Ho;Shin, Won-Sik
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.44-52
    • /
    • 2002
  • Low temperature thermal desorption (LTTD) has become one of the cornerstone technologies used for the treatment of contaminated soils and sediments in the United States. LTTD technology was first used in the mid-1980s for soil treatment on sites managed under the Comprehensive Environmental Respones, Compensation and Liability Act (CERCLA) or Superfund. Implementation was facilitated by CERCLA regulations that require only that spplicable regulations shall be met thus avoiding the need for protracted and expensive permit applications for thermal treatment equipment. The initial equipment designs used typically came from technology transfer sources. Asphalt manufacturing plants were converted to direct-fired LTTD systems, and conventional calciners were adapted for use as indirect-fired LTTD systems. Other innovative designs included hot sand recycle technology (initially developed for synfuels production from tar sand and oil shale), recycle sweep gas, travelling belts and batch-charged vacuum chambers, among others. These systems were used to treat soil contaminated with total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), pesticides, polychlorinated biphenyls (PCBs) and dioxin with varying degrees of success. Ultimately, performance and cost considerations established the suite of systems that are used for LTTD soil treatment applications today. This paper briefly reviews the develpoment of LTTD systems and summarizes the design, performance and cost characteristics of the equipment in use today. Designs reviewed include continuous feed direct-fired and indirect-fired equipment, batch feed systems and in-situ equipment. Performance is compared in terms of before-and-after contaminant levels in the soil and permissible emissions levels in the stack gas vented to the atmosphere. The review of air emissions standards includes a review of regulations in the U.S. and the European Union (EU). Key cost centers for the mobilization and operation of LTTD equipment are identified and compared for the different types of LTTD systems in use today. A work chart is provided for the selection of the optmum LTTD system for site-specific applications. LTTD technology continues to be a cornerstone technology for soil treatment in the U.S. and elsewhere. Examples of leading-edge LTTD technologies developed in the U.S. that are now being delivered locally in global projects are described.

  • PDF

Development of Pyrolysis Equipment to Depolymerize the Waste Tire (폐타이어의 열분해장치 개발)

  • Kim, Tae-Kyu;Yang, Sang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1208-1213
    • /
    • 2007
  • Some structural problems and temperature difference of the pyrolysis equipment were improved by using the structure analysis and the optimal design of torch. The pyrolysis equipment developed in this study is expected to the excellent pyrolysis effect. To modify user-friendly the dimension of a part, we developed the feature modeling system that all of the related parts automatically change applying to the three-dimensional modeling method.

A Study on Deport Maintenance Technology for Recycling Observation Window of the K1A1 Tank Commander's Primary Thermal Sight (K1A1 전차 전차장 열상조준경의 관측창 재생을 위한 창 정비기술 연구)

  • Choi, Myoungjin;Byun, Yongwan;Yang, Jaekyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.89-94
    • /
    • 2019
  • K1A1 tank commander's primary thermal sight is a device that enables tank commanders to detect, identify, aim and track the target by observing targets in all directions during day, night and in situations of smokescreen and fog through $360^{\circ}$ rotation independent from the gunner's primary thermal sight and stabilizing the line of sight even under the vibrations occurring when the tank is standstill and moving. The main function of this device is to detect and process visible and thermal images and deliver the final images to the tank commander. One of the core parts to that end is the observation window (daytime/thermal image window). This core part is mounted at the entrance of the optical path for observing the target and plays the role of making visible light during the daytime and infrared light during the night pass through the target and transmitting the resultant images to the internal optical system of the tank commander's primary thermal sight. Such core parts have been selected as depot maintenance items so that they are replaced by new parts instead of being recycled when they are subjected to maintenance in most cases. That is, the military budget is wasted because such parts are replaced by new parts despite that they can be recycled for maintenance. Therefore, this study proposed a mounting tool for polishing and coating observation windows (daytime and thermal image window) using planar polishing equipment and DLC (Diamond-Like Carbon) coating equipment. In addition, this study presented an amendment (proposal) of the Depot Maintenance Work Request (DMWR) already published to verify the performance of recycled products including the establishment of inspection standards for recycling processes.

Study on Performance of Radiant Heat Shields for Offshore Installations (해양플랜트 복사열 차폐막의 차폐성능에 관한 연구)

  • Kim, Bong Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.330-339
    • /
    • 2019
  • Radiant heat shields are normally installed on offshore oil and gas platforms to protect personnel, equipment, and structures from the thermal radiation emitted by a flare system. A heat shield should be individually designed to reduce the thermal radiation to the target level, and then manufactured and installed after the performance verification. However, in general, a heat shield is designed and manufactured by trial and error based on the performance test. For this reason, it is difficult to develop and design radiant heat shields in the Korean shipbuilding and marine equipment industry because of the lack of performance test data and limited experience. In the present study, the results of experiments conducted to verify the performances of radiant heat shields were analyzed, and the thermal radiation characteristics and performance characteristics of the radiant heat shields were investigated. The insights and conclusions developed in the present study will be useful in terms of the design and development of radiant heat shield, as well as in their performance verification tests.

Analysis of Thermal Characteristic for Wiring at Heater Connector of Semiconductor Chiller Equipment (반도체 공정 칠러 장비의 히터 접속부 전기배선에 대한 열적 특성 분석)

  • Gyu Bin Kim;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.27-34
    • /
    • 2023
  • With the technological development of the semiconductor industry, the roles of electrical and thermal energy supply and control of semiconductor equipment in ultrafine processes have become very important. However, instances of electrical fires in the chiller heater, which is used for cooling in the semiconductor manufacturing process, are increasing. A fire occurs in combustibles due to high heat at the connection part of the chiller heater, that is, when the number of electrical wires in the connection part is reduced or when the wires are completely disconnected. In this study, the temperature characteristics were compared and analyzed through experiments and 3D simulations. The number of electrical wires, which is the connection part of the chiller heater, was reduced by 90%, 50%, 30%, 10%, and 5%, and the wires were completely disconnected. When the number of electrical wires was reduced by 5%, heat of up to 80℃ was generated, which is a relatively high temperature but insufficient to cause a fire in combustibles. Complete disconnection occurred due to the vibration of the motor and other components, and sparks and arcs were generated, resulting in a rapid increase in temperature to up to 680℃. When completely disconnected, the temperature increase was sufficient to cause a fire in the combustibles covering the terminal block. Therefore, in this study, the causes of electrical fires in chiller heaters were investigated and preventive measures were proposed by analyzing abnormal signals and thermal characteristics caused by the electrical wiring being reduced and completely disconnected.

Recent Developments Involving the Application of Infrared Thermal Imaging in Agriculture

  • Lee, Jun-Soo;Hong, Gwang-Wook;Shin, Kyeongho;Jung, Dongsoo;Kim, Joo-Hyung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.280-293
    • /
    • 2018
  • The conversion of an invisible thermal radiation pattern of an object into a visible image using infrared (IR) thermal technology is very useful to understand phenomena what we are interested in. Although IR thermal images were originally developed for military and space applications, they are currently employed to determine thermal properties and heat features in various applications, such as the non-destructive evaluation of industrial equipment, power plants, electricity, military or drive-assisted night vision, and medical applications to monitor heat generation or loss. Recently, IR imaging-based monitoring systems have been considered for application in agricultural, including crop care, plant-disease detection, bruise detection of fruits, and the evaluation of fruit maturity. This paper reviews recent progress in the development of IR thermal imaging techniques and suggests possible applications of thermal imaging techniques in agriculture.

Development of Rapid Thermal Processor for Large Glass LTPS Production

  • Kim, Hyoung-June;Shin, Dong-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.533-536
    • /
    • 2006
  • VIATRON TECHNOLOGIES has developed Field-Enhanced Rapid Thermal Processor (FERTP) system that enables LTPS LCD and AMOLED manufacturers to produce poly-Si films at low cost, high throughput, and high yield. The FE-RTP allows the diverse process options including crystallization, thermal oxidation of gate oxides and fast pre-compactions. The process and equipment compatibility with a-Si TFT lines is able to provide a viable solution to produce poly-Si TFTs using a-Si TFT lines.

  • PDF