• Title/Summary/Keyword: Thermal Equilibrium

Search Result 376, Processing Time 0.022 seconds

Research on the Relative Contribution of Two Electron Groups of Ar plasma with Non-thermal Equilibrium Electron Distribution (열적 비평형 전자분포를 갖는 아르곤 플라즈마의 두 전자그룹의 상대적인 기여도에 대한 연구)

  • Lee, Young Seok;Lee, Jang Jae;Kim, Si Jun;You, Shin Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.76-83
    • /
    • 2018
  • The electron energy probability function (EEPF) is of significant importance since the plasma chemistry such as the rate of ionization is determined by the electron energy distribution function. It is usually assumed to be Maxwell distribution for 0-D global model. Meanwhile, it has been observed experimentally that the form of EEPF of Ar plasma changes from being two-temperature to Druyvesteyn like as the gas pressure increases. Thus, to apply the 0-D global model of Maxwellian distribution to the non-Maxwellian plasma, we investigated the relative contribution of two distinct electrons with different temperatures. The contributions of cold/hot electrons to the equilibrium state of the plasma have attracted interest and been researched. The contributions to the power and particle balance of cold/hot electrons were studied by comparing the result of the global model considering all combinations of electron temperatures with that of 1-D Particle-in-Cell and Monte Carlo collision (PIC-MCC) simulation and the results of studies were analyzed physically. Furthermore, comparisons term by term for variations of the contribution of cold/hot electrons at different driving currents are presented.

Assessment of geothermal potential in an area of sulfate-rich hot springs, Bugok, southern Korea

  • Park Seong-Sook;Yun Seong-Taek;Chae Gi-Tak;So Chil-Sup;Koh Yong-Kwon;Choi Hyeon-Su
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.303-306
    • /
    • 2006
  • Using a variety of chemical geothermometers we estimate the temperature of a deep geothermal reservoir in relation to thermal groundwater in the Bugok area, southern Korea, in order to assess the potential use of geothermal energy in South Korea. Thermal water at Bugok has been exploited down to about 400 m below the land surface and shows the highest outflow temperatures (up to $78{\circ}C$) in South Korea. Based on the hydrochemical data and occurrence, groundwater in Bugok can be classified into three groups: $Na-SO_4$ type thermal groundwater (CTGW) occurring in the central part (about 0.24 $km^2$) $Ca-HCO_3$ type cold groundwater (SCGW) occurring in shallow peripheral parts of CTGW; and the intermediate type groundwater (STGW). CTGW waters are typical of thermal water in the area, because they have the highest outflow temperatures and contain very high concentrations of Na, K and $SiO_2$ due to the sufficient reaction with silicate minerals in deep reservoir. Their enriched $SO_4$ was likely formed by gypsum dissolution. The major ion composition of CTGW shows the general approach to a partial equilibrium state with rocks at depth. The application of various alkali ion geothermometers yields temperature estimates in the range of 88 to $198{\circ}C$ for the thermal reservoir. Multiple mineral equilibrium calculation indicates asimilar but narrower temperature range between about 100 and $155{\circ}C$. These temperature estimates are not significantly higher than the measured outflow temperatures for CTGW Considering the heat loss during the ascent- of thermal waters, this fact may suggest that a thermal reservoir in the study area is likely located at relatively shallow depths (possibly close to the depth of preexisting wells). Therefore, we suggest a high potential for geothermal energy development around the Bugok area in southern Korea.

  • PDF

AN EXTENSION OF THE SMAC ALGORITHM FOR THERMAL NON-EQUILIBRIUM TWO-PHASE FLOWS OVER UNSTRUCTURED NON-STAGGERED GRIDS (과도상태 2상유동 해석을 위한 비정렬.비엇갈림 격자 SMAC 알고리즘)

  • Park, I.K.;Yoon, H.Y.;Cho, H.K.;Kim, J.T.;Jeong, J.J.
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.51-61
    • /
    • 2008
  • The SMAC (Simplified Marker And Cell) algorithm is extended for an application to thermal non-equilibrium two-phase flows in light water nuclear reactors (LWRs). A two-fluid three-field model is adopted and a multi-dimensional unstructured grid is used for complicated geometries. The phase change and the time derivative terms appearing in the continuity equations are implemented implicitly in a pressure correction equation. The energy equations are decoupled from the momentum equations for faster convergence. The verification of the present numerical method was carried out against a set of test problems which includes the single and the two-phase flows. The results are also compared to those of the semi-implicit ICE method, where the energy equations are coupled with the momentum equation for pressure correction.

A Modified Turbulent Porous Modeling for Numerical Analysis (수치해석을 위한 변형된 난류 다공성 모델링)

  • Chung, Kil-Yoan;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.875-882
    • /
    • 2002
  • The modeling for turbulent flow through a porous media has not been confirmed because of a undetermined constant which appears in the governing equations. In present study, the turbulent porous modeling based on the local thermal equilibrium has been extended to the turbulent clear flow. A undetermined constant is also suggested by microscopic analysis. The microscopic analysis is performed in the flat tube with micro-channels, and it confirms that the undetermined constant is 0.99. It is shown that the results of the macroscopic analysis using confirmed constant agree well with those of the microscopic analysis with a maximum error of 3.5%.

Heat Transfer in Metallic Foam Subjected to Constant Heat Flux

  • Jin, Meihua;Kim, Pil-Hwan;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1372-1377
    • /
    • 2008
  • Since metallic foam will increase the performance of heat exchanger, it have caused many researcher's attention recently. Our research base on the model that metallic foams applied to heat exchanger. In this case, there is three kind of heat transfer mechanisms, heat conduction in fibers, heat transfer by conduction in fluid phase, and internal heat change between solid and fluid phases. In this paper, we first discuss the acceptance of applying thermal equilibrium among the two phases. then to calculate the dimensionless temperature profile along 7 metallic foams. The 7 samples have different characteristics, such as area ratio, effective conductivity, porosity, etc.

  • PDF

A study on the physical behavior of arc plasmas in transferred-type Torch (이행형 토치에서의 아크 플라즈마의 물리적 거동에 관한 연구)

  • 김외동;고광철;강형부
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.415-425
    • /
    • 1996
  • This study presents an analytical method of solving the behaviors of arc plasma in a nozzle constricting transferred-type torch and purposes to obtain the basic data for the design of a plasma torch, which can be obtained from the temperature, pressure, velocities and voltage distributions. We have to solve some conservation equations simultaneously and need to know the exact thermal gas properties in order to obtain the correct behaviors of arc plasma. It is also necessary to give the relevant physical or geometric boundary conditions. For the simplicity of analysis, we assumed that (a) the plasma flow is laminar, (b)the local thermodynamic equilibrium, i.e. LTE, prevails over the entire arc column region. The electrode sheath effects were neglected and the nozzle area was excluded from the analysis by assuming that the current flow into the nozzle is zero. We solved the momentum transfer equation including the self-magnetic pinch effect, and obtained the temperature distribution from the energy conservation equation. From this temperature, we could get arc voltage distribution. (author). refs., figs., tabs.

  • PDF

Dust Radiative Transfer Model of Spectral Energy Distributions in Clumpy, Galactic Environments

  • Seon, Kwang-il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.52.2-52.2
    • /
    • 2018
  • The shape of a galaxy's spectral energy distribution ranging from ultraviolet (UV) to infrared (IR) wavelengths provides crucial information about the underlying stellar populations, metal contents, and star-formation history. Therefore, analysis of the SED is the main means through which astronomers study distant galaxies. However, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the mid-IR and Far-IR. I present the updated 3D Monte-Carlo radaitive transfer code MoCafe to compute the radiative transfer of stellar, dust emission through a dusty medium. The code calculates the emission expected from dust not only in pure thermal equilibrium state but also in non-thermal equilibrium state. The stochastic heating of very small dust grains and/or PAHs is calculated by solving the transition probability matrix equation between different vibrational, internal energy states. The calculation of stochastic heating is computationally expensive. A pilot study of radiative transfer models of SEDs in clumpy (turbulent), galactic environments, which has been successfully used to understand the Calzetti attenuation curves in Seon & Draine (2016), is also presented.

  • PDF