• Title/Summary/Keyword: Thermal Energy Need

Search Result 181, Processing Time 0.054 seconds

A compactly integrated cooling system of a combination dual 1.5-MW HTS motors for electric propulsion

  • Le, T.D.;Kim, J.H.;Hyeon, C.J.;Kim, D.K.;Yoon, Y.S.;Lee, J.;Park, Y.G.;Jeon, H.;Quach, H.L.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.25-29
    • /
    • 2016
  • The high temperature superconducting (HTS) contra-rotating propulsion (CRP) systems comprise two coaxial propellers sited on behind the other and rotate in opposite directions. They have the hydrodynamic advantage of recovering the slipstream rotational energy which would otherwise be lost to a conventional single-screw system. However, the cooling systems used for HTS CRP system need a high cooling power enough to maintain a low temperature of 2G HTS material operating at liquid neon (LNe) temperature (24.5 - 27 K). In this paper, a single thermo-syphon cooling approach using a Gifford-McMahon (G-M) cryo-cooler is presented. First, an optimal thermal design of a 1.5 MW HTS motor was conducted varying to different types of commercial 2G HTS tapes. Then, a mono-cryogenic cooling system for an integration of two 1.5 MW HTS motors will be designed and analyzed. Finally, the 3D finite element analysis (FEA) simulation of thermal characteristics was also performed.

The Thermal Conduction Property of Structural Concrete using Insulation Performance Improvement Materials (단열성능향상 재료를 사용한 구조용 콘크리트의 열전도 특성)

  • Park, Young-Shin;Kang, Min-Gi;Kim, Jung-Ho;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The part of a building with the biggest energy loss is the exterior and many studies are actively conducted to reduce the energy loss on that part. However, most studies consider the window frames and insulation materials, but many studies do not discuss the concrete that takes more than 70% of the exterior. In order to minimize the energy loss of buildings, it is necessary to enhance the concrete's insulation performance and studies need to be conducted on this. Therefore, this study used a micro foam cell admixture, calcined diatomite powder, and lightweight aggregates as a part of a study to develop a type of concrete with improved insulation performance that has twice higher thermal conductivity compared to concrete. It particularly secured the porosity inside concrete to lower thermal conductivity. As a result of the experiment, the slump and air capacity showed fair results, but all mixtures containing micro foaming agent showed 14.3~35.1% lower mass per unit of volume compared to regular concrete. Compressive strength decreased slightly due to the materials used to improve the insulating performance, but it all satisfied this study's target strength(24MPa). Thermal conductivity was up to twice higher than that of regular concrete.

A study on economic evaluation when renewable energy system is introduced in public buildings inside of Daegu Sin-seo innovation city (대구신서혁신도시 내 공공건축물의 신재생에너지 시스템 도입시 경제성 평가에 관한 연구)

  • Kim, Bo-Ra;Kim, Ju-Young;Hong, Won-Hwa
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.175-180
    • /
    • 2009
  • According to an increasing demand of political support and development on renewable energy as a solution for the energy problem in Korea, the government has established a goal to raise renewable energy supply from 2.27% to 5% until 2011. Especially in the case of public building in which energy use is in great demand, it would bring a great advantage to develop and utilize the Photovoltaic System as an electric energy and Geothermal Heat Pump System as a thermal energy. On the occasion of Photovoltaic System, Photovoltaic module can be used as an architectural material so that it can reduce construction cost and when we use solar energy, it is possible to make building's own power supply. As for Geothermal Heat Pump System, It can be used infinitely as long as the solar energy exist and operation cost is cheap and yearly efficiency is stable. However, we need to make a plan to reduce early investment expanses for these two renewable energy systems and to expand a diffusion rate as we develop a competitive domestic technology level. So in this study, we are going to perform evaluation of economical efficiency according to the introduction of Photovoltaic System and Geothermal Heat Pump System in public buildings which will be built up inside of Daegu Sin-seo innovation city. As a first step, we will investigate present installation condition of these two renewable energy systems and based upon that, will seek efficient introduction program of renewal energy systems that can be applied in public buildings.

  • PDF

Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink (MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계)

  • Gebreslassie, Maru Mihret;kim, Min;Byun, Gi-sig;Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

The Novel Configuration of Integrated Network for Building Energy System (빌딩 에너지시스템 통합네트워크 구축에 관한 연구)

  • Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.229-234
    • /
    • 2008
  • The new millennium has started with several innovations driven by fast evolution of the technologies in energy sector. A strong impulse towards the diffusion of new economical efficient technologies regulatory incentives related to energy production from renewable source and a small scale building trigeneration and to promotion of more sustainable environmental-friendly generation solutions, the evolution of electricity markets, more and more binding local emission constraints, and the need for improving the security of supply to reduce the energy system vulnerability. The 24 percentage energy quantify of total energy consumption consumes in commercial buildings and residential houses and the 30% portion of total $CO_2$ emissions covers also in the commercial buildings and residential houses sector. To cope with efficiently this energy sinuation in building sector, Building microgrid or building tooling, heating & power(BCHP) system has been interested in recent day due to meeting thermal and electric energy requirements efficiently and with appropriate energy quality. A multi agent system is a collective of intelligent agents that communicate with each other and work cooperatively to achieve common goals. Also, it is to medicate and coordinate communication between Control Areas and Security Coordinators for teal-time control of the BCHP system and the power pid. In this new circumstance, it is very important to integrate the power and energy delivery system and the information system(communication, networks, and intelligent equipment) that controls it. Therefore, development of smart control modules with open communication protocol and seamlessly interchange the data and information between control network and data network including extranet and intranet give a great meanings. We designed and developed the TCP/IP-CAN IED agent modules and ModBus./LonTalk/(TCP/IP) IED agent ones to configure the multi-agent system based smart energy network of commercial buildings and also intelligent algorithms for inverter fault diagnostics which ran be operated in control level or agent level network.

  • PDF

Numerical Simulation on the Effect of the Land Coverage Change on the Urban Heat Budget (토지피복 변화가 도시열수지에 미치는 영향에 관한 수치시뮬레이션)

  • Kim, Sang-Ok;Yeo, In-Ae;Ha, Kyung-Min;Yee, Jurng-Jae;Yoon, Seong-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.176-179
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed using 3-Dimensional Urban Canopy Model. The characteristics of urban thermal environment was analyzed by classifying land coverage and increasing natural land coverage ratio. The results are as follows. The characteristics of the land coverage on urban thermal environment formation can be summarized by the effects like higher temperature on the artificial coverage, and the contrary effects on the natural coverage. When the water coverage 100% was made up, maximum temperature was declined by $5.5^{\circ}C$, humidity by the 6.5g/kg, wind velocity by 0.6m/s, convective sensible heat by $400W/m^2$ and the evaporative latent heat was increased by $370W/m^2$ compared to when artificial coverage 100% was formed. These simulation results need to be constructed as DB which shows urban quantitative thermal characters by the urban physical structure. These can be quantitative base for suggesting combinations of the building and urban planning features at the point of the desirable urban thermal environment as well as analysing urban climate phenomenon.

  • PDF

A study about flat mirror type solar thermal generation system to independently supply electricity on water resources management system (수자원 관리 시스템 독립 전력공급을 위한 평판형 태양열 발전 시스템 기초구현방안 연구)

  • Lee, Sang-Hun;Seo, Tae-Il;Jung, Seung-Kwon;Gwon, Yong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5067-5073
    • /
    • 2015
  • Recently, various researches about water resources management system have been conducted in order to handle many problems, for example, climate change can provoke rapid change of water circulation, continuous population increase, population concentration phenomenon and so on. For population concentration region, many researches about water resources management system have been carried out, but many regions far away from civilization have not been handled as research topics. Especially these regions always need electricity supply infra, but significant costs will be required to construct the infra. Therefore this paper presents a methodology in order to generate the electricity from new renewable energy resources and supply the electricity into these region. For this, solar thermal generation system was experimentally studied. Moreover, this solar power generation system was considered as an important component to establish an ESS (Energy Storage System).

Building Integrated Vegetation Systems into the New Sainsbury's Building Based on BIM

  • Lee, Dong-Kyu
    • Journal of KIBIM
    • /
    • v.4 no.2
    • /
    • pp.25-32
    • /
    • 2014
  • Today, there is a growing need of environment-friendly buildings, so-called 'green', facilities, and energy saving buildings to decrease environmental pollutants released into cities by construction activities. Green-Building Information Modeling (Green-BIM) is a purpose-built solution which supports to forecast energy consumption of 3-D model of a building by augmenting its primary 3-D measurements (width, height and depth) with many more dimensions (e.g. time, costs, social impacts and environmental consequences) throughout a series of sequential phases in the lifecycle of a building. The current study was carried out in order to integrate vegetation systems (particularly green roof and green wall systems) and investigate thermal performance of the new Sainsbury's building which will be built on Melton road, Leicester, United Kingdom. Within this scope, a 3-D building model of the news Sainsbury's building was first developed in $Autodesk^{(R)}$ $Revit^{(R)}$ and this model was then simulated in $Autodesk^{(R)}$ $Ecotect^{(R)}$once weather data of the construction site was obtained from $Autodesk^{(R)}$ Green Building $Studio^{(R)}$. This study primarily analyzed data from (1) solar radiation, (2) heat gains and losses, and (3) heating and cooling loads simulation to evaluate thermal performance of the building integrated with vegetation system or conventionally available envelops. The results showed that building integrated vegetation system can potentially reduce internal solar gains on the building rooftops by creating a 'bioshade'. Heat gains and losses through roofs and walls were markedly diminished by offering greater insulation on the building. Annual energy loads for heating and cooling were significantly reduced by vegetation more significantly through the green roof system in comparison to green wall system.

Performance Estimation of Hybrid Solar Air-Water Heater on Single Working of Heating Medium (복합형 태양열 가열기에서 열매체 단일운전에 따른 기기성능 평가)

  • Choi, Hwi-Ung;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.49-56
    • /
    • 2014
  • Research about hybrid solar air-water heater that can make heated air and hot water was conducted as a part of improving efficiency of solar thermal energy. At this experiment, ability of making heating air and hot water was investigated and compared with traditional solar air heater and flat plate solar collector for hot water when air or liquid was heated respectively. Comparing hybrid solar air-water heater that used in this experiment to other solar air heater studied already, it has a lower efficiency at same mass flow rate. Air channel structure, fin's shape and arrangement in the air channel result in these difference then the ability of air heating need to be improved with changing these thing. In case of making hot water, performance was shown as similar with traditional system although the air channels were established beneath absorbing plate. But the heat loss coefficient was shown higher value by installing of air channel. Also the performance of hot water making was shown lower value at same liquid mass flow rate with traditional flat plate solar collector for hot water. So the necessity of performance improvement at lower mass flow rate of each heating medium can be confirmed.

Analysis on the Effects of Building Coverage Ratio and Floor Space Index on Urban Climate (도시의 건폐율 및 용적률이 도시기후에 미치는 영향 분석)

  • Yeo, In-Ae;Yee, Jurng-Jae;Yoon, Seong-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.19-27
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed by 3-Dimensional Urban Canopy Model. The characteristics of urban climate were analyzed combining artificial land coverage, building size, heat production from the air conditioning and topographic conditions as physical variables which affects urban climate characteristics. The results are as follows. (1) The aspects of the urban climatal change is derived to be related to the combination of the building coverage ratio, building height and shading area. According to the building height, the highest temperature was increased by $2.1^{\circ}C$ from 2-story to 5-story building and the absolute humidity by 2.1g/kg maximum and the wind velocity by 1.0m/s was decreased from 2-story to 20-story building. (2) Whole heat generation was influenced by the convective sensible heat at the lower building height and by the artificial heat generation at the higher one over 20-story building influence to some extent of the building coverage ratio. The effect of the altitude is not more considerable than the other variables as below $1^{\circ}C$ of the air temperature. In the last, deriving the combination of building coverage and building height is needed to obtain effectiveness of the urban built environment planning at the point of the urban climate. These simulation results need to be constructed as DB which shows urban quantitative thermal characters by the urban physical structure. These can be quantitative base for suggesting combinations of the building and urban planning features at the point of the desirable urban thermal environment as well as analyzing urban climate phenomenon.