• 제목/요약/키워드: Thermal Energy Management

검색결과 252건 처리시간 0.031초

이중진공관형 태양열 집열기의 성능시험에 관한 연구 (Study on Performance Testing of Concentric Evacuated Tube Solar Energy Collector System)

  • 윤영환;김경환
    • 한국태양에너지학회 논문집
    • /
    • 제25권2호
    • /
    • pp.19-26
    • /
    • 2005
  • Concentric evacuated tube solar energy collector has been interested recently since government has driven to install alternative energy systems in new large building. In this paper, testing of the evacuated tube collector is conducted in outdoor during daytime by transient method. The collector thermal efficiencies are plotted in term of $(T_{in}-T_a)/Ic$, where $T_{in}$ is inlet working fluid temperature, $T_a$ is atmospheric temperature and $I_c$ is solar irradiation on the collector surface. The evacuated tube collector efficiency is ranged from 50% to 63% in real outdoor condition. In addition, the total overall heat loss coefficient is found to have an inverse variation to $(T_{in}-T_a)/I_c$ so that the coefficient becomes very high when $(T_{in}-T_a)/I_c$ is small.

PEMFC 시스템 효율 향상을 위한 열 관리 설비 개발 및 연구 (Development and Research of Thermal Management Equipment for Efficiency Enhancement of PEMFC Systems)

  • 김재환;이지승;강인석;주현철
    • 한국수소및신에너지학회논문집
    • /
    • 제35권2호
    • /
    • pp.205-215
    • /
    • 2024
  • This study introduced a direct contact heat exchanger to enhance the efficiency of polymer electrolyte membrane fuel cells (PEMFCs) systems. According to previous research, 28% of the operating costs of fuel cell systems are attributed to heat exchanger devices, prompting the design of a direct contact heat exchanger to address this issue. Optimal configurations were determined through computational fluid dynamics analysis and experimental device fabrication, and the enhanced heat exchange performance of the heat exchanger was experimentally confirmed. Through this, the contribution of the direct contact heat exchanger to the heat management and efficiency enhancement of PEMFC systems was established.

CHARACTERISTICS OF THE PNEUMATIC TRANSFER SYSTEM AND THE IRRADIATION HOLE AT THE HANARO RESEARCH REACTOR

  • Chung, Yong-Sam;Kim, Sun-Ha;Moon, Jong-Hwa;Kim, Hark-Rho;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • 제38권6호
    • /
    • pp.585-590
    • /
    • 2006
  • This paper describes the results of an irradiation test and the specifications of the pneumatic transfer system (PTS) in the NAA #3 irradiation hole at the HANARO research reactor, which was reinstalled after some modifications of the operation mode at the end of 2004. The outer and inner diameters of the PE transfer tube are 34.1 and 27.5 mm, respectively. PE rabbit was used for sample irradiation. The $N_2$ gas pressure of the PTS lines was adjusted to 0.75 bar. The average sending time to the reactor was $8.5{\pm}0.3$ s and the average receiving time back to the receiver was $3.2{\pm}0.2$ s. The internal and external temperature of the irradiation tube was measured in a range of 50 to $80^{\circ}C$ for a 40 s to 80 s irradiation time, respectively. The optimum irradiation time was estimated to be less than 80 s. The thermal, epithermal and fast neutron flux at 30 MW thermal power were $1.42{\pm}0.01{\times}10^{14},\;1.51{\pm}0.04{\times}10^{13}$ and $9.48{\pm}0.69{\times}10^{11} n{\cdot}cm^{-2}{\codt}s^{1-}$, respectively. The cadmium ratio was approximately 9.40. The data obtained will be applied to supplement user information and for reactor management.

설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010)

  • 한화택;이대영;김서영;최종민;김수민;권영철;백용규
    • 설비공학논문집
    • /
    • 제23권6호
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

환경에너지시설내 화격자식 소각로 수치해석 연구 (Numerical research for Gate Type Waste Incinerators In Environment energy facilities)

  • 김종윤;전용한
    • 대한안전경영과학회지
    • /
    • 제19권4호
    • /
    • pp.149-155
    • /
    • 2017
  • This study is analyzed combustion phenomena based on the environmental energy facility incinerator. It is assumed that combustible components of waste are composed of carbon and hydrogen, and the combustion process of fuel is by setting as multi-component / multistage reaction. As the combustion chamber is burned, the high temperature environment is achieved, also the heat transfer accompanied by the turbulent flow and the generation of NOx, a pollutant, are interpreted to predict the thermal and fluid characteristics and pollution emissions of the grate incinerator. As the result of internal flow analysis, the slow flow around the ash chute and the mixing effect due to the complicated turbulence around the combustion chamber were predicted to show excellent performance. It is shown to the internal average temperature was about $1024^{\circ}C$, around the about $1000^{\circ}C$ homogeneous temperature distribution. Due to the sudden temperature decrease in the boiler, the flue gas temperature at the outlet was estimated to be about $220^{\circ}C$.

중대형 냉방시스템의 비용 및 장단점 비교분석 (A Comparison Analysis on Costs and Merits & Demerits of Medium and Large Air-Conditioning Systems)

  • 황성욱;원종률;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.223-224
    • /
    • 2008
  • In this paper, a comparison analysis is executed about costs and merits & demerits of medium and large air-conditioning systems which are gas absorbtion chillers and thermal energy storages. These results will be applied to B/C analysis to propose advanced load management subsidy policies in the electrical and gas field.

  • PDF

전기자동차용 부탄 연료 복합열원 히팅시스템의 열적 성능에 관한 수치적 연구 (Numerical Study on Thermal Performances of Multi Heat Source Heating System Using Butane for Electric Vehicle)

  • 방유마;서재형;마헤쉬수레쉬파티르;조종표;이무연
    • 한국산학기술학회논문지
    • /
    • 제17권10호
    • /
    • pp.725-731
    • /
    • 2016
  • 본 연구의 목적은 복합열원을 이용하는 전기자동차용 부탄 연소식 히팅 시스템의 열적 성능을 수치적으로 연구하는 것이다. 복합열원 히팅 시스템은 승차공간 난방을 목적으로 하는 공기 가열부와 배터리 열관리를 위한 냉각수 가열부로 구성되어 있으며, 각 열원별 열적 성능을 분석하기 위하여 상용 수치해석 프로그램인 ANSYS CFX를 이용하여 공기 및 냉각수 유량변화에 따른 각 열원별 토출 온도를 도출하고 난방 용량을 계산하였다. 수치해석을 통하여 도출된 각 열원별 토출 온도는 이론적으로 계산한 토출 온도와 비교하였고, 약 0.15% 이하의 오차를 나타내었다. 결론적으로 외부공기의 유량을 0.005, 0.01, 0.015 kg/s로 증가시킬 경우 승차공간으로 유입되는 공기 온도는 감소하였으며, 배터리 열관리용으로 배출되는 냉각수 온도는 증가하였다. 또한 냉각수 유량을 0.005, 0.01, 0.015 kg/s로 증가시킬 경우 토출되는 난방 공기와 냉각수 온도는 감소하였다. 더불어 배터리 열관리를 위한 최적의 냉각수 온도와 승차공간을 위한 높은 난방 용량을 만족하기 위한 공기 및 냉각수 유량 조건은 각 0.01 kg/s 와 0.015 kg/s로 나타났다.

에너지 프로세스 혁신을 통한 제조 핵심 공정의 에너지 효율화 방안 연구 (Study on Energy Efficiency Improvement in Manufacturing Core Processes through Energy Process Innovation)

  • 조상준;이현무;이진수
    • 미래기술융합논문지
    • /
    • 제2권4호
    • /
    • pp.43-48
    • /
    • 2023
  • 전세계적으로 기후변화 대응을 위한 글로벌 탄소중립을 공조하고 있다. 한국의 경우 온실가스 배출량이 빠른 속도로 증가하고 있어 해결이 시급한 상황이다. 이에 본 연구는 스팀트랩이라는 열 에너지 수집 디바이스를 개발하고, 스팀트랩으로 에너지 사용량을 데이터로 수집하여 향후 전력 사용량에 대해서 예측이 가능한 AI 모델을 개발하였다. 해당 AI 모델의 전력 사용량 예측 정확도 평균은 96.7%로 높은 정확도를 보여주었다. 따라서 해당 AI 모델을 통해 어느날 전력 사용량이 높은지와 어떤 설비에서 전력 사용량이 높은지를 예측하고 관리 할 수 있게 되었다. 향후 연구는 스팀트랩의 이상탐지를 통한 효율적인 장비 운용과 에너지 관리 시스템의 표준화를 통해 에너지 소비 효율을 최적화하여 온실가스 배출을 줄이고자 한다.

가정용 고분자연료전지 시스템의 운전 방법에 따른 성능 비교 (Operation Performance of a Polymer Electrolyte Fuel Cell Cogeneration System for Residential Application)

  • 이원용;정귀성;유상필;엄석기;김창수
    • 한국수소및신에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.364-371
    • /
    • 2005
  • Fuel cell systems(FCS) have a financial and environmental advantage by providing electricity at a high efficiency and useful heat. For use in a residence, a polymer electrolyte fuel cell system(PEFCS) with a battery pack and a hot water storage tank has been modelled and simulated. The system is operated without connection to grid line. Its electric conversion efficiency and heat recovery performance are highly dependent on operation strategies and also on the seasonal thermal and electric load pattern. The output of the fuel cell is controlled stepwise as a function of the state of the battery and/or the storage water tank. In this study various operation strategies for cogeneration fuel cell systems are investigated. Average fuel saving rates at different seasons are calculated to find proper load management strategy. The scheme can be used to determine the optimal operating strategies of PEFCS for residential and building applications.

PCM 함유된 축열석고보드의 열환경특성 (Thermal Environment Characteristic of the Heat Storage Gypsum Board Included with Phase Change Material)

  • 권오훈;윤희관;한성국;안대현;심명진;조성운;박종순;김재용
    • 공업화학
    • /
    • 제21권5호
    • /
    • pp.570-574
    • /
    • 2010
  • 기존 단열재의 주된 기능은 단지 열전달을 차단하는 기능과 건물로부터 열손실을 줄여주는 기능만을 수행했다. 반면, 축열재는 특정온도 범위 내에서 열에너지를 저장 또는 방출함으로써 건물에너지 사용량을 절감할 수 있다. 축열 건자재는 실내 공기온도 변화주기를 효과적으로 조절하여 일정하게 온도를 유지시킬 수 있다. 결과적으로 냉난방시스템 기능을 효율적으로 향상시킬 수 있다. 본 연구는 건축자재로 많이 이용되고 있는 석고보드에 상변화잠열물질을 축열재로 첨가하여 그 물성과 열환경 특성을 파악하였다. 또한 축열 건자재를 활용할 때 발생가능한 문제점을 확인하였다. 마지막으로 TVOC와 HCHO 함량 분석으로부터 오염물질의 배출가능성을 조사하여 축열 건자재의 환경 친화도를 검토하였다.