• Title/Summary/Keyword: Thermal Elasto-Plastic

Search Result 125, Processing Time 0.024 seconds

A Study on the Mechanical Characteristics of the Resistance Multi-spot Welded Joints (저항 다점용접부의 역학적 특성에 관한 연구)

  • 방한서;방희선
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.499-505
    • /
    • 2001
  • In order to classify the mechanical phenomena of thermal elasto-plastic behavior on the multi-spot welded joints, this study has tried to carry out three-dimensional thermal elasto-plastic analysis on them. However, because the shape of multi-spot welded joints is not taxi-symmetric, unlike the cafe of single-spot welded joint, the solution domain for simulation should be three dimension. Therefore, in this paper, firstly, the three-dimensional thermal elasto-plastic program is developed by an iso-parametric finite element method. Secondly, from the results analyzed by developed program, this has clarified mechanical characteristics and their production mechanism on single and multi-spot waled joints. Moreover, it has been intended to make clear effects of pitch length on welding residual stresses, plastic strain of multi-spot welded joints.

  • PDF

A New Algorithm for the Integration of Thermal-Elasto-Plastic Constitutive Equation (열탄소성 구성방정식 적분을 위한 새로운 알고리즘)

  • 이동욱;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1455-1464
    • /
    • 1994
  • A new and efficient algorithm for the integration of the thermal-elasto-plastic constitutive equation is proposed. While it falls into the category of the return mapping method, the algorithm adopts the three point approximation of plastic corrector within one time increment step. The results of its application to a von Mises-type thermal-elasto-plastic model with combined hardening and temperature-dependent material properties show that the accurate iso-error maps are obtained for both angular and radial errors. The accuracy achieved is because the predicted stress increment in a single step calculation follows the exact value closely not only at the end of the step but also through the whole path. Also, the comparison of the computational time for the new and other algorithms shows that the new one is very efficient.

Analysis on the Elasto-Plastic Thermal Stress and Deformation of Metal Casting Mould by FEM (Finite Element Method) (FEM을 이용한 주조금형(鑄造金型)의 탄소성(彈塑性) 열응력(熱應力) 및 열변형(熱變形) 해석(解析))

  • Kim, Ok-Sam;Koo, Bon-Kwon;Min, Soo-Hong
    • Journal of Korea Foundry Society
    • /
    • v.13 no.1
    • /
    • pp.81-93
    • /
    • 1993
  • It is well-known that the analysis of elasto-plastic thermal stress and deformation are substantially important in optimal design of metal casting mould. The unsteady state thermal stress and deformation generated during the solidification process of ingot and mould have been analyzed by two dimensional thermal elasto-plastic theories. Distributions of temperature, stress and relative displacement of the mould are calculated by the finite element method and compared with experimental results. In the elasto-plastic thermal stress analysis, compressive stress occurred at the inside wall of the mould whereas tensile stress occurred at outside wall. A coincidence between the analytical and experimental results is found to be fairly good, showing that the proposed analytical method is reliable.

  • PDF

The Plane-Deformation Thermal Elasto-Plastic Analysis During Welding of Plate (평판용접에 관한 평면변형 열탄소성 해석)

  • 방한서;한길영
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.33-40
    • /
    • 1994
  • Welding of structure produces welding residual stresses which influence buckling strength, brittle fracture strength and cold crack on the weld parts. Therefore, it is very important to accurately analyze the residual stress before welding in order to guarantee the safety of weldment. If the weld length is long enough compared to the thickness and the breadth of plate, thermal and mechanical behaviors in the middle portion of the plate are assumed to be uniform along the thickness direction(z-axis). Thus, the following conditions(so-called plane deformation) can be assumed for the plate except near its end;1) distributions of stress and strain are independent on the z-axis;2) plane normal to z-axis before deformation remains plane during and after deformation. In this paper, plane-deformation thermal elasto-plastic problem is formulated by being based on the finite element method. Moreover special regards and paid to the fact that material properties in elastic and plastic region are temperature-dependence. And the method to solve the plane-deformation thermal elasto-plastic problem is shown by using the incremental technique. From the results of analysis, the characterisics of distribution of welding residual stress and plastic strain with the production mechanism are clarified.

  • PDF

A Study on the Thermo-elasto-plastic Analysis of Upset Forming (전기 업셋팅 가공시의 열탄소성 해석에 관한 연구)

  • 왕지석;박태인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.69-76
    • /
    • 1994
  • Thermal elasto-plastic analysis of axi-symmetric body by the finite element method is presented in this paper for analyzing the process of upset forming of circular section extruded bar. The example of calculation for upset forming of Nimonic extruded bar is also presented. It is shown that remeshing of quadrilateral finite element is necessary because the very highly distorted element by plastic deformation disturbs the calculation. Calculated values for nodal points in new mesh are obtained from nodal points of old mesh by linear interpolation method. The experimental results are compared with calculated values. The appearance of upsetupset forming obtained by experimental method is very similar to that obtained by calculations. So, it is proved that the thermal elasto-plastic analysis of axi-symmetric body by the finite element method is very useful for finding the optimum upsetting condition.

  • PDF

A STUDY ON THE MECHANICAL CHARACTERISTICS OF RESISTANCE MULTI-SPOT WELDED JOINTS WITH PITCH LENGTH

  • Bang, Han-Sur;Bang, Hee-Seon;Joo, Sung-Min;Chang, Woong-Seong;Lee, Chang-Woo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.809-815
    • /
    • 2002
  • For clarifying the mechanical phenomena of thermal elasto-plastic behavior on the multi-spot welded joints, this study has tried to carry out three-dimensional thermal elasto-plastic analysis on them. However, because the shape of multi-spot welded joints is not axi-symmetric, unlike the case of single-spot welded joint, the solution domain for simulation should be three-dimensional. Therefore, in this paper, from the results analyzed using the developed the three dimensional unstationary heat conduction and thermal elasto-plastic programs by an iso-parametric finite element method, mechanical characteristics and their production mechanism on single- and multispot welded joints were clarified. Moreover, effects of pitch length on temperature, welding residual stresses and plastic strain of multi-spot welded joints were evaluated, indicating that a pitch of 30mm was advantageous compared to a pitch of 15mm.

  • PDF

Numerical Analysis of Responses of a Elasto-plastic Tube under Kerosene-air Mixture Detonation (케로신-공기 혼합물의 비정상연소 모델과 탄소성 관의 동적 거동 수치해석)

  • Lee, Younghun;Gwak, Min-cheol;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.169-172
    • /
    • 2015
  • This paper presents a numerical investigation on kerosene-air mixture detonation and behaviors of thermal elasto-plstic thin metal tube under detonation loading based on multi-material analysis. The detonation loading is modeled by the kerosene-air mixture detonation which is compared with CJ condition and experimental cell size. And the thermal softening effect on elasto-plstic model of metal tube is indicated by different dynamic response of detonation loaded tube in various temperature and tube thickness.

  • PDF

A Study on Weldment Boundary Condition for Elasto-Plastic Thermal Distortion Analysis of Large Welded Structures (대형 용접구조물의 탄소성 열변형 해석을 위한 용접부의 변형률 경계조건에 관한 연구)

  • Ha, Yun-Sok
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.48-53
    • /
    • 2011
  • A thermal distortion analysis which takes strains directly as boundary conditions removed barrier of analysis time for the evaluation of welding distortion in a large shell structure like ship block. If the FE analysis time is dramatically reduced, the structure modeling time or the input-value calculating time will become a new issue. On the contrary to this, if the calculation time of analysis input-value is dramatically reduced and its results also are more meaningful, a little longer analysis time could be affirmative. In this study, instead of using inherent strain based on elastic analysis, a thermal strain based on elasto-plastic analysis is used as the boundary condition of weldments in order to evaluate the welding distortion. Here, the thermal strain at the weldment was established by using a stress-strain curve established from the test results. It is possible to automatically recognize the modeling induced-stiffness in the shrinkage direction of welded or heated region. The validity of elasto-plastic thermal distortion analysis was verified through the experiment results with various welding sequence.

Welding Deformation Analysis of Plates Using the Inherent Strain-based Equivalent Load Method (고유변형률 기반 등가하중법을 이용한 판의 용접변형 해석)

  • Lee, Joo-Sung
    • Journal of Welding and Joining
    • /
    • v.28 no.2
    • /
    • pp.39-46
    • /
    • 2010
  • IIn this study, used is the equivalent loading method based on the inherent strain to predict the welding deformation of panel members. Equivalent loads are computed from the inherent strain distribution around weld line, and then applied for the linear finite element analysis. Thermal deformation of panel members can be, of course, carried out through the rigorous thermal elasto-plastic analysis procedure but it is not practical in applying to predicting the welding deformation of large structures such as blocks found in a ship structure from view of computing time. The present equivalent load approach has been applied to flat plate model to verify the present approach, and to several curved plate models having the curvature in the welding direction to investigate the effect of the longitudinal curvature upon the weld-induced deformation. The results are compared with those by thermal elasto-plastic analysis. As far as the present results are concerned, it can be said that the present approach shows good agreement with the results by welding experiment and the rigorous thermal elasto-plastic analysis. The present approach has been also applied to predict the welding deformation of panel block as for application illustration to practical model.

The Studies on the Prediction of Residual Stresses by Thermal Elasto-Plastic Analysis and its Effect for Circumferential Welded Cylinder (열탄소성 해석에 의한 원주용접 원통관의 잔류응력 예측과 그 영향에 대한 연구)

  • 류기열;엄동석
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.115-123
    • /
    • 1997
  • The buckling strength, fatigue strength, stress corrosion cracking are considerably effected on one of initial imperfections, the residual stresses produced by a circumferential weld between axisymmetric cylinders. Therefore, we study the residual stresses, plastic strain and temperature distribution with using thermal elasto-plastic analysis which are generated by a circumferential weld between axisymmetric cylinders. It is investigated that welding residual stresses have an effect on the strength of cylinder for inner and outer shell under external pressure.

  • PDF