• 제목/요약/키워드: Thermal Dissipation

검색결과 417건 처리시간 0.022초

The effects of thermo-mechanical behavior of living tissues under thermal loading without energy dispassion

  • Ibrahim Abbas;M. Saif AlDien;Mawahib Elamin;Alaa El-Bary
    • Coupled systems mechanics
    • /
    • 제13권1호
    • /
    • pp.61-72
    • /
    • 2024
  • This study seeks to develop analytical solutions for the biothermoelastic model without accounting for energy dissipation. These solutions are then applied to estimate the temperature changes induced by external heating sources by integrating relevant empirical data characterizing the biological tissue of interest. The distributions of temperature, displacement, and strain were obtained by utilizing the eigenvalues approach with the Laplace transforms and numerical inverse transforms method. The impacts of the rate of blood perfusion and the metabolic activity parameter on thermoelastic behaviors were discussed specifically. The temperature, displacement, and thermal strain results are visually represented through graphical representations.

Metal PCB에 있어서 양극산화법으로 제작한 Al2O3절연막의 방열특성 (Heat dissipation of Al2O3 Insulation layer Prepared by Anodizing Process for Metal PCB)

  • 조재승;김정호;고상원;임실묵
    • 한국표면공학회지
    • /
    • 제48권2호
    • /
    • pp.33-37
    • /
    • 2015
  • High efficiency LED device is being concerned due to its high heat loss, and such heat loss will cause a shorter lifespan and lower efficiency. Since there is a demand for the materials that can release heat quickly into the external air, the organic insulating layer was required to be replaced with high thermal conductive materials such as metal or ceramics. Through anodizing the upper layer of Al, the Breakdown Voltage of 3kV was obtained by using an uniform thickness of $60{\mu}M$ aluminum oxide($Al_2O_3$) and was carried out to determine the optimum process conditions when thermal cracking does not occur. Two Ni layers were formed above the layer of $Al_2O_3$ by sputtering deposition and electroplating process, and saccharin was added for the purpose of minimizing the remain stress in electroplating process. The results presented that the 3-layer film including the Ni layer has an adhesive force of 10N and the thermal conductivity for heat dissipation is achieved by 150W/mK level, and leads to improvement about 7 times or above in thermal conductivity, as opposed to the organic insulation layer.

흑연과 탄소나노튜브 함유 아크릴 복합체 박막의 방열 특성 (Thermal Dissipation Property of Acrylic Composite Films Containing Graphite and Carbon Nanotube)

  • 김준영;강찬형
    • 한국표면공학회지
    • /
    • 제50권3호
    • /
    • pp.198-205
    • /
    • 2017
  • Thermal dissipation was investigated for poly methyl methacrylate (PMMA) composite films containing graphite and multi wall carbon nanotube(CNT) powders as filler materials. After mixing PMMA with fillers, solvent, and dispersant, the pastes were prepared by passing through a three roll mill for three times. The prepared pastes were coated $15{\sim}40{\mu}m$ thick on a side of 0.4 mm thick aluminium alloy plate and dried for 30 min at $150^{\circ}C$ in an oven. The content of fillers in dried films was varied as 1, 2, and 5 weight % maintaining the ratio of graphite and CNT as 1:1. Raman spectra from three different samples exhibited D, G and 2D peaks, as commonly observed in graphite and multi wall CNT. Among those peaks, D peak was prominent, which manifested the presence of defects in carbon materials. Thermal emissivity values of three samples were measured as 0.916, 0.934, and 0.930 with increasing filler content, which were the highest ever reported for the similar composite films. The thermal conductivities of three films were measured as 0.461, 0.523, and $0.852W/m{\cdot}K$, respectively. After placing bare Al plate and film coated samples over an opening of a polystyrene box maintained for 1 h at $92^{\circ}C$, the temperatures inside and outside of the box were measured. Outside temperatures were lower by $5.4^{\circ}C$ in the case of film coated plates than the bare one, and inside temperatures of the former were lower by $3.6^{\circ}C$ than the latter. It can be interpreted that the PMMA composite film coated Al plates dissipate heat quicker than the bare Al plate.

사출성형을 통한 CNT 및 Al Powder를 이용한 방열 및 차량용 경량 복합재료 제작 연구 (A study on the fabrication of lightweight composite materials for heat dissipation using CNT and Al powder with injection molding for vehicle)

  • 임병일;윤재웅
    • Design & Manufacturing
    • /
    • 제13권3호
    • /
    • pp.24-28
    • /
    • 2019
  • In this study, a study was carried out that could effectively produce a heat dissipation effect on plastic materials. Using carbon nanotube (CNT), aluminum powder and plastic, the material properties were tested in 2 cases of compounding ratio. The test sample mold was designed and constructed prior to the experiment. The experiments include tensile strength, elongation rate, flexural strength, flexural elasticity rate, eye-jaw impact strength, gravity and thermal conductivity. Results from 60% and 70% mixture of aluminium to plastic were tested, and a 10% less combined result was a relatively good property. For research purposes, the heat dissipation effect and light weighting obtained a good measure when the combined amount of Al was 60%.

사출성형을 통한 CNT 및 Al Powder를 이용한 방열 및 차량용 경량 복합재료 제작 연구 (A study on the fabrication of lightweight composite materials for heat dissipation using CNT and Al powder with injection molding for vehicle)

  • 임병일;윤재웅
    • Design & Manufacturing
    • /
    • 제13권3호
    • /
    • pp.6-10
    • /
    • 2019
  • In this study, a study was carried out that could effectively produce a heat dissipation effect on plastic materials. Using carbon nanotube (CNT), aluminum powder and plastic, the material properties were tested in 2 cases of compounding ratio. The test sample mold was designed and constructed prior to the experiment. The experiments include tensile strength, elongation rate, flexural strength, flexural elasticity rate, eye-jaw impact strength, gravity and thermal conductivity. Results from 60% and 70% mixture of aluminium to plastic were tested, and a 10% less combined result was a relatively good property. For research purposes, the heat dissipation effect and light weighting obtained a good measure when the combined amount of Al was 60%.

압축기 갭 유로 형상에 따른 압축기 EER 향상 (Improvement of Compressor EER Based on Shape of Gap Flow Passage)

  • 한상혁;이영림
    • 한국기계가공학회지
    • /
    • 제21권3호
    • /
    • pp.63-69
    • /
    • 2022
  • Compressor efficiency must be improved to reduce refrigerator power consumption. In this study, the heat dissipation rate through the compressor housing is increased via gap flow passages between the compressor body and housing. Four types of gap flow passages are considered for achieving the maximum heat-dissipation rate. In addition, thermal analysis is performed to examine the effect of increased heat dissipation rate on the energy efficiency ratio (EER). The results show that the heat dissipation rate, compressor superheat, and compressor EER increased by up to approximately 52%, 3 ℃, and approximately 1%, respectively.

유동해석을 활용한 DUT Shell의 최적 방열구조 설계 (Design of Optimal Thermal Structure for DUT Shell using Fluid Analysis)

  • 이정구;진병진;김용현;배영철
    • 한국전자통신학회논문지
    • /
    • 제18권4호
    • /
    • pp.641-648
    • /
    • 2023
  • 최근 4차 산업 혁명 중에서 인공지능의 급성장은 반도체의 성능 향상 및 회로의 집적을 기반으로 진보하였다. 전자기기 및 장비의 내부에서 연산을 돕는 트랜지스터는 고도화 및 소형화 되어 가며 발열의 제어 및 방열의 효율 개선이 새로운 성능의 지표로 대두되었다. DUT(Device Under Test) Shell은 트랜지스터의 검수를 위하여 정격 전류를 인가한 후, 임의의 발열 지점에서 전원을 차단한 상태에서, 방열을 통하여 트랜지스터의 내구도를 평가하여 불량 트랜지스터를 검출하는 장비이다. DUT Shell은 장비 내부의 방열 구조에 따라 동시에 더 많은 트랜지스터를 테스트할 수 있기 때문에 방열 효율은 불량 트랜지스터 검출 효율과 직접적인 관계를 갖는다. 이에 본 논문에서는 DUT Shell의 방열 최적화를 위하여 배치구조의 다양한 방법을 제안하고 전산유체역학을 이용하여 최적의 DUT Shell의 다양한 변형과 열 해석을 제안하였다.

열경화성 분석을 위한 가속열화 된 Chlorosulfonated Polyethylene의 경년특성 연구 (Study of Thermal Ageing Behavior of the Accelerated Thermally Aged Chlorosulfonated Polyethylene for Thermosetting Analysis)

  • 신용덕
    • 전기학회논문지
    • /
    • 제66권5호
    • /
    • pp.800-805
    • /
    • 2017
  • The accelerated thermal ageing of CSPE (chlorosulfonated polyethylene) was carried out for 16.82, 50.45, and 84.09 days at $110^{\circ}C$, equivalent to 20, 60, and 100 years of ageing at $50^{\circ}C$ in nuclear power plants, respectively. As the accelerated thermally aged years increase, the insulation resistance and resistivity of the CSPE decrease, and the capacitance, relative permittivity and dissipation factor of those increase at the measured frequency, respectively. As the accelerated thermally aged years and the measured frequency increase, the phase degree of response voltage vs excitation voltage of the CSPE increase but the phase degree of response current vs excitation voltage decrease, respectively. As the accelerated thermally aged years increase, the apparent density, glass transition temperature and the melting temperature of the CSPE increase but the percent elongation and % crystallinity decrease, respectively. The differential temperatures of those are $0.013-0.037^{\circ}C$ and, $0.034-0.061^{\circ}C$ after the AC and DC voltages are applied to CSPE-0y and CSPE-20y, respectively; the differential temperatures of those are $0.011-0.038^{\circ}C$ and $0.002-0.028^{\circ}C$ after the AC and DC voltages are applied to CSPE-60y and CSPE-100y, respectively. The variations in temperature for the AC voltage are higher than those for the DC voltage when an AC voltage is applied to CSPE. It is found that the dielectric loss owing to the dissipation factor($tan{\delta}$) is related to the electric dipole conduction current. It is ascertained that the ionic (electron or hole) leakage current is increased by the partial separation of the branch chain of CSPE polymer as a result of thermal stress due to accelerated thermal ageing.

Thermal Characteristics of the Optimal Design on 20W COB LED Down Light Heat Sink

  • Kwon, Jae-Hyun;Lee, Jun-Myung;Huang, Wei;Park, Keon-Jun;Kim, Yong-Kab
    • International journal of advanced smart convergence
    • /
    • 제2권2호
    • /
    • pp.19-22
    • /
    • 2013
  • As the demand of the LED for lighting that emits light by p-n junction is increasing, studies on heatproof plate technology is being conducted to minimize the temperature of the LED lighting. As for the temperature of the LED devices, their light emitting efficiency decreases and the maximum lifespan drops down to 1/5. Therefore there are heat dissipation studies going on to minimize the heat. For LED heat dissipation, aluminum heat sink plates are mostly used. For this paper, we designed heat sink that fits residential 20W COB LED Down Light; packaged the heat sink and 20W COB and analyzed and evaluated the thermal properties through a Solidworks flow simulation. We are planning to design the optimal heat sink plate to solve the thermal agglomeration considering TIM(Thermal Interface material).

자료처리/저장장치 방열판의 View Factor 분석 (Analysis on the View Factor of Data Storage and Handling Units's Radiators)

  • 황인영;신소민
    • 한국항공우주학회지
    • /
    • 제45권8호
    • /
    • pp.678-685
    • /
    • 2017
  • 지구관측위성에 탑재되는 자료처리/저장장치 방열판은 장비의 주기적인 고발열, 배치, 장착성 등 설계 특성으로 인해 쉴드가 장착된 홈 형태를 갖는다. 홈 형태 방열판의 영향성과 쉴드 방열판의 열성능을 확인하기 위해, 평판 방열판을 기준으로 홈 형태의 방열판과 쉴드 방열판을 비교하여 열진공 시험을 실시하였다. 시험결과를 바탕으로 view factor에 의한 열교환과 방열판의 온도를 이론해석적으로 분석하여 열 설계 성능비교의 타당성을 입증하였다.