• Title/Summary/Keyword: Thermal Displacement

Search Result 506, Processing Time 0.029 seconds

대면적 임프린트 장비를 위한 LCD Glass 변형 시뮬레이션 연구 (LCD Glass strain Simulation For Large Size Imprint Equipment)

  • 송영중;신동훈;임홍재;장시열;이기성;정재일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1626-1631
    • /
    • 2007
  • The purpose of the study is to simulate the displacement of the LCD glass during process of a large size imprint. During this process, a small temperature variation makes thermal stress, which causes the horizontal variation of mold and glass. During alignment process to fix the LCD glass on a alignment stage, the vertical displacement is made by the absorption pressure and the shear stress. This study simulates the horizontal displacement of mold and glass due to temperature variation, the vertical displacement depending on the shape of absorption surface fixing the LCD glass in the alignment process, and the horizontal and vertical displacement which occurs in the LCD glass at the alignment process. Algor which is a FEM code for a framework simulation was applied. Temperature variation above ${\pm}$ $0.1^{\circ}C$ on mold and glass causes the horizontal displacement of 150nm due to thermal expansion. The vertical displacement due to the circular is ten times of the case of rectangular absorption nozzle. The displacement of the LCD glass in the alignment process is about 49nm.

  • PDF

에어컨 실내기 사출 조립품의 열 변형 3D측정과 유한요소해석 (Study on the Thermal Deformation of the Air-conditioner Indoor Unit Assembly Using 3D Measurement and Finite Element Analysis)

  • 홍석무;황지훈;김철곤;엄성욱
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.251-255
    • /
    • 2015
  • Thermal deformation, such as bending and twisting, occurs among the polymer parts of air-conditioner indoor units because of repetitive temperature change during heating operation. In this study, a numerical method employing finite-element analysis to efficiently simulate the thermal deformation of an assembly is proposed. Firstly, the displacement of an actual assembly produced by thermal deformation was measured using a 3D optical measurement system. The measurement results indicated a general downward sag of the assembly, and the maximum displacement value was approximately 1 mm. The temperature distribution was measured using a thermographic camera, and the results were used as initial-temperature boundary conditions to perform temperature-displacement analysis. The simulation results agreed well with the measured data. To reduce the thermal deformation, the stiffness increased 100%. As the results, the maximum displacement decreased by approximately 5.4% and the twisting deformation of the holder improved significantly.

광열변위법을 이용한 재료의 열확산계수 측정에 대한 이론적 연구 (A Theoretical Study for the Thermal Diffusivity Measurement of Solid Material using Photothermal Displacement Method)

  • 전필수;이은호;이광재;유재석;김기현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.132-137
    • /
    • 2000
  • A complete theoretical treatment of the photothermal displacement technique has been performed for thermal diffusivity measurement in solid materials. The influence of parameters - radius and modulation frequency of pump beam and thickness of material - on the phase lag was studied. The phase decreases up to a certain position, then starts to increase and does have an asymptotic value. The position, where phase has the minimum value, is a function of thermal diffusion length thickness of sample, and radius of pump beam. A new method based on minimum phase lag is described to determine the thermal diffusivity of solid material.

  • PDF

광열변위의 위상곡선을 이용한 금속재료의 열확산계수 측정 (Thermal Diffusivity Measurement for Metal Using Phase Curve of Photothermal Displacement)

  • 이은호;이광재;유재석
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.47-53
    • /
    • 2001
  • As the technology has developed and new materials have been produced, it is important to measure the thermal diffusivity of material and to predict the heat transfer in the solid subject to thermal processes. This measurement can be done in a non-contact way using photothermal displacenent spectroscopy. In this study, photothermal displacement method was used to measure the thermal diffusivity quantitatively. The specimens used in this study were the pure materials. The Ar-ion laser was used as an energy source and the periodical deformation induced by this pump laser was detected by the He-Ne laser. The magnitude and the phase angle of deformation gradient were measured. The thermal diffusivity was obtained by analyzing the phase angle of deformation gradient. As the result, comparing with the literature value, the thermal diffusivities of materials measured were showed about 2% error.

Large Displacement Polymer Bimorph Actuator for Out-of-Plane Motion

  • Jeung Won-Kyu;Choi Seog-Moon;Kim Yong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.263-267
    • /
    • 2006
  • A new thermal bimorph actuator for large out-of-plane displacement is designed, fabricated and tested. The deflecting beam is composed of polyimide, heater, and polyvinyl difluorides with tetrafluoroethylene (PVDF-TrFE). The large difference of coefficient of thermal expansion (CTE) of two polymer layers (polyimide and PVDF-TrFE) can generate a significant deflection with relatively small temperature rise. Compared to the most conventional micro actuators based on MEMS (micro-electro mechanical system) technology, a large displacement, over 1 mm at 20 mW, could be achieved. Additionally, we can achieve response time of 14.6 ms, resonance frequency of 12 Hz, and reliability ability of $10^5$ cycles. The proposed actuator can find applications where a large vertical displacement is needed while maintaining compact overall device size, such as a micro zooming lens, micro mirror, micro valve and optical application.

Terfenol-D의 온도에 따른 자기변형 특성 (Temperature Dependence of Magnetostriction in Terfenol-D)

  • 박영우;금기경;한승현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.275-278
    • /
    • 2002
  • The performance of Terfenol-D, the commercially available magnetostrictive material, is highly dependent on the prestress, magnetic field intensity and temperature. This paper presents an experimental investigation of the temperature effect on the magnetostriction in Terfenol-D. The effects of both prestress and magnetic field on the magnetostriction are also presented. Experimental results show that both the prestress and magnetic field on the magnetostriction are significant. It is also observed that the displacement decreases slightly to around 40$^{\circ}C$, then increases to 80$^{\circ}C$. It indicates that the displacement decreases due to the reduced magnetization, and increases due to the thermal expansion, as the temperature increases. It means that the reduced magnetization affects more in the displacement change up to 40$^{\circ}C$, and the thermal expansion affects more in the displacement change beyond 40$^{\circ}C$.

  • PDF

멤스 기술을 이용한 대변형 바이모프 구동기 (Large Displacement Bimorph Actuator Using MEMS Technology)

  • 정원규;최석문;김용준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1286-1289
    • /
    • 2004
  • A new thermal bimorph actuator for large out-of-plane displacement is designed, fabricated and tested. The deflecting beam is composed of polyimide, heater, and polyvinyl difluorides with tetrafluoroethylene(PVDF-TrFE). The large difference of coefficient of thermal expansion(CTE) of two polymer layers (polyimide and PVDF-TrFE) can generate a large deflection with relatively small temperature rising. Compared to the most conventional micro actuators based on MEMS(micro-electro mechanical system) technology, a large displacement, over 1 mm at 20 mW, could be achieved. The proposed actuator can find applications where a large vertical displacement is needed while keeping compact overall device size, such as a micro zooming lens.

  • PDF

고신뢰 머시닝센터를 위한 열변위 보상 센서 설계기술 (Design of Thermal Displacement Compensation Sensor for High Reliability Machine Tools)

  • 김일해;장동영;박정훈;박성욱;심풍수
    • 한국정밀공학회지
    • /
    • 제28권8호
    • /
    • pp.886-893
    • /
    • 2011
  • To increase the reliability and positional accuracy of a machine tool, a novel capacitive displacement sensor having a cylindrical shape is presented to measure the axial displacement of a machine tool spindle. Characteristics of the sensor were analyzed by numerical simulation. The sensor was built into a specific machine tool spindle and its performance was experimentally investigated. The accuracy of a thermal error compensation system of a machine tool can be enhanced greatly using proposed sensor.

변위전류법에 의한 지질단분자막의 전기특성에 관한 연구 (A study on the electrical properties of lipid monolayers by displacement current method)

  • 이경섭;권영수
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권5호
    • /
    • pp.450-454
    • /
    • 1996
  • Maxwell-Displacement-Current(MDC) measuring technique has been applied to the study of monolayers of Dilauroylphosphatidylcholine (L-.alpha.-DLPC) and Dimyristoylphosphatidylcholine (L-.alpha.-DMPC). The displacement current was generated from monolayers on a water surface by monolayer compression. Displacement current was generated when the area per molecule was about 250.angs.$^{2}$, 280.angs.$^{2}$. Displacement current was generated in the gas state, gas/liquid state, and liquid state in the course of monolayer compression. The orientational change of molecules in monolayers was discussed on the basis of the MDCs obtained. Finally, we measured differential thermal analysis of sample.

  • PDF

금형주조기를 이용한 알루미늄 합금 금형의 수치해석적 열변형 해석과 실험에 관한 연구 (Numerical and Experimental Studies on Thermal Strain Analysis of Al Alloy Casting Mold using Metal Foundry)

  • 오율권;김용범;윤희성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2050-2054
    • /
    • 2007
  • This study numerically and experimentally investigated on thermal strain analysis of aluminum alloy casting mold using metal foundry. To predict the numerical result of thermal strain in Al alloy casting mold during the cooling process, it is performed the investigation of temperature distribution, stress and displacement based on the physical properties of Al alloy. In results of this study, Al alloy casting mold represented rapidly cooling graph during initial 20minutes after beginning cooling process, therefore value of stress and displacement is rapidly changed during initial 20minutes after beginning cooling process. In addition to, temperature distribution obtained by experiment confirmed corresponding pattern then compared numerical analysis with experiment. These results are distribute to make the effective and the high precision casting mold.

  • PDF