• Title/Summary/Keyword: Thermal Curing

Search Result 516, Processing Time 0.029 seconds

Compression Strength Behavior of Mixed Soil Recycling Bottom Ash for Surface Layer Hardening (매립석탄회를 재활용한 표층연약지반 개량용 혼합토의 압축강도 특성 연구)

  • Oh, Gi-dae;Kim, Kyoung Yul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.287-293
    • /
    • 2019
  • Domestic thermal power plant fly ash is at a situation which emissions are increasing every year. Comparing to Fly Ash, Bottom Ash is only 15 %, but it's recycling rate is low, so most of them is being buried in the ground. However, landfill site of every power plant is full, and the construction of a new landfill is difficult. To solve this problem, the best solution is to use Bottom Ash as a landfill of large-scale civil engineering projects. The purpose of this study was to investigate the compression strength behavior characteristics of weak clay and uniaxial compression test to examine the applicability of surface soil solidification method of mixed soils mixed with industrial waste coal ash and weak clay which is buried in bulk. As a result of the test, the fluidity of the Mixed soil with clay + bottom ash + cement was improved to 200 mm at the water content of 91-92 %. The uniaxial compressive strength was also good for the mixed soils (clay + bottom ash + cement) meeting the required strength of 159 kN/㎡ at 28 days. However, the other samples did not meet the required strength. In this study, the prediction equations for the compression strength behavior by cement and curing period were presented.

SiOC Coating on Stainless Steel Using Polyphenylcarbosilane, and Its Anti-corrosion Properties (폴리페닐카보실란을 이용한 SiOC가 코팅된 스테인리스스틸 제조 및 이의 내부식성 특징)

  • Kim, Jong-Il;Lee, Yoon-Joo;Kim, Soo-Ryong;Kim, Young-Hee;Kim, Jung-Il;Woo, Chang-Hyn;Choi, Doo-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • To improve the chemical stability of metal, the ceramic coatings on metallic materials have attracted interest from many researchers due to the chemical inertness of ceramic materials. To endure strong acids, SiOC coating on metal substrate was carried out by dip coating method using 20wt% polyphenylcarbosilane solution; SiC powder was added to the solution at 10wt% and 15wt% to improve the mechanical properties and to prevent cracks of the film. Thermal oxidation as a curing step was carried out at $200^{\circ}C$ for crosslinking of the polyphenylcarbosilane, and the coating samples were pyrolysized at $800^{\circ}C$ under argon to convert the polyphenylcarbosilane to SiOC film. The thicknesses of the SiOC coating films were $2.36{\mu}m$ and $3.16{\mu}m$. The quantities of each element were measured as $SiO_{1.07}C_{6.33}$ by EPMA, and it can be confirmed that the SiOC film from polyphenylcarbosilane was formed in a manner that was carbon rich. The hardness of the SiOC film was found to be 3.2Gpa through nanoindentor measurement. No defect including cracks appeared in the SiOC film. The weight loss of the SiOC coated stainless steel was within 2% after soaking in 10% HCl solution at $80^{\circ}C$ for one week. From these results, SiOC coating shows good potential for application to protect against severe chemical corrosion of stainless steel.

High Frequency Properties of Fe93.5Si6.5 Magnetic Powder/Epoxy Composite Film (Fe93.5Si6.5 자성분말/에폭시 복합재 필름의 고주파 특성)

  • Hong, Seon-Min;Kim, Cheol-Gi
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.195-199
    • /
    • 2008
  • Composites of $Fe_{93.5}Si_{6.5}$ powder and epoxy were prepared using a thermal curing process. Scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and network analyzer were used to analyze the structure, electromagnetic properties and microwave absorption of the composites. Results show that the saturation magnetization depends on the fraction of the $Fe_{93.5}Si_{6.5}$ powder in the composite, which affects initial permeability. It is believed that the eddy current loss is a dominant factor over 1 GHz and that the resonance frequency of the composite decreases with increasing fractions of $Fe_{93.5}Si_{6.5}$ powder. Finally, reflection loss was calculated from the permeability and permittivity of these composites. Composite with 50 wt.% $Fe_{93.5}Si_{6.5}$ powder fractions and 5 mm thickness showed reflection loss below -20 dB from 3.66 GHz to 4.16 GHz. Therefore, it is believed that thin Fe-Si/epoxy composites may be a good candidate for microwave absorption application.

An Advanced Assessment Strategy of Thermal Cracks Induced by Hydration Heat and Internal Restraint (내부구속에 의한 수화열 균열의 개선된 평가 방법)

  • Jeon, Se-Jin;Choi, Myoung-Sung;Kim, Young-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.677-685
    • /
    • 2006
  • Control of the temperature difference across a section is an effective strategy to minimize the hydration-heat-induced cracks for the structures where internal restraint is dominant. The domestic code, however, overestimates probability of the crack occurrence judging from the foreign codes and construction experiences of real structures. Therefore, the background of the equation presented in the domestic code was investigated step by step to examine validity of the equation, and, as a result, it was found that the equation is established on a basis of simple elastic model where the change of elastic modulus in an early age is not considered. An advanced assessment strategy was proposed taking into account the hypoelastic model which corresponds to an incremental constitutive equation. The presented procedure resulted in an increased crack index, i.e. decreased crack risk, the value of which depends on various conditions of the mix and structures. Also, a prediction equation of the temperature difference was proposed which can readily consider the effect of the curing condition and ambient temperature in a hand calculation. For further study, the assessment equation may be more classified to strictly consider the characteristics of the mix and structures if the analytical and experimental data are accumulated.

Solvent-free UV-curable Acrylic Adhesives for 3D printer build sheet (3D 프린터 빌드시트용 무용제 UV 경화형 아크릴 점착제의 제조)

  • Lee, Bae Hwa;Park, Dong Hyup;Kim, Byung Jick
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.93-100
    • /
    • 2020
  • 3D printing technology enables proper objects to be made through an additive manufacturing method, but resulting in dimension deviation of the product due to contraction phenomenon as cooling melted filament resin injected from high-temperature use environment. In this research, we studied on acrylic adhesives for 3D printer build sheet in order to fabricate high-quality products with a precise shape and to well-mount without distortion. The solvent-free UV-curable acrylic adhesive formulation was designed by adding 4-acryloylmorpholine (ACMO) with high adhesion, toughness, glass transition temperature so that adhesion properties are stable at high temperature and products are easily mounted/detached from the adhesives. The designed formulation was polymerized through two-steps using post-addition of monomers. Using this, the acrylic adhesive was coated to make a film and then analyzed using various experimental techniques. As a result, the fabricated adhesive exhibited high glass transition temperature and there was little gap in peel strength before and after thermal treatment. Moreover, it was confirmed by rheological analysis that this adhesive can provide great bonding/debonding ability without distortion. We demonstrated the fabrication of a rectangular product using a 3D printing method using our acrylic adhesive as a build sheet. Mounting ability and workability were satisfactory and dimension deviation of the product was tiny. Because the product is easily detachable from the acrylic adhesive developed here than conventional build sheets, it is expected that this will provide work convenience to users who use the 3D printer.

Design of waste Sludge/Food Waste Biological Treatment Process using Closed ATAD System (밀폐형 ATAD system을 이용한 하수슬러지/음식물쓰레기 통합처리 공정 설계)

  • Kwon, Hyeok-Young;Ji, Young-Hwan;Song, Han-Jo;Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.129-137
    • /
    • 2000
  • In this study, biological treatment process of MWWT(Municipal wet-waste Treatment) has been developed through a moduling of the containerized closed ATAD(Auto thermal aerobic digestion) system & closed vertical dynamic acerator, which were used for food waste and cattle manure, respectively. Though biological process has several advantages such as low concentrations of heavy metals and salts, proper and stable C/N ratio and constant reaction rate against the process treating two wastes separately, it has a obstacles of salt concentration and much usage of bulking agent such as wood chip. After rapid oxidation in the boxed tower reactor for 5 days, the content of sewage sludge would be reduced 65% on around, might be mixed with the food waste that had been treated in the static closed reactor during 6 days and put in the secondary static reactor for curing. During composting process, the odor contained in the gas generated from the reactor was removed by passing it through a biofilter as well as the leachate was treated in the wastewater treatment facility. Consequently, it seemed to be possible to compost sewage sludge at mild and stable operating condition and at low cost through the biological ATAD process resulting in the production of organic compost satisfying the specifications regulated by itself.

  • PDF

Effects of Fume silica on synthesis of New Austria Tunnel Method Resin for new material in space aviation (우주항공의 신소재를 위한 New Austria Tunnel Method 수지합성에 대한 Fume silica의 영향)

  • Kim, Kijun;Lee, Jooho;Park, Taesul;Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.595-601
    • /
    • 2014
  • The microstructures of NATM were examined by SEM, FT-IR spectra, tensile properties, mole % of [NCO/OH], and particle size analyzer. Growing concerns in the environment-friendly industries have led to the development of solvent-free formulations that can be cured. We had synthesized NATM(New Austria Tunnel Method) resin having the ability to protect stainless steel against corrosion. Comparing with general NATM resin and coatings, this resin that synthesized with polyurethane and epoxy was highly stronger in intensity and longer durability. Hybrid resin was composed of polyols, MDI, epoxy, silicone surfactant, catalyst and crosslink agent, and fillers. Moreover, fillers such as fume silica not only accelerated the curing rate but also improved the physical property as thermal barriers. The rigid segments of synthetic resin in mechanical properties were due to fume silica and the increase the mole% of [NCO/OH] for corrosion protection. In conclusion, the hybrid resin microstructure with crosslink agent and fume silica are good material for thermosetting coating of metal substrates such as stainless steel.

A Feasibility Study on Developing Snow Melting Systems using CNT-Cement Composite (도로 융설체 개발을 위한 탄소나노튜브-시멘트 복합체 특성에 관한 실험적 연구)

  • Heo, Jinnyung;Park, Bumjin;Kim, Taehyeong
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.29-37
    • /
    • 2013
  • PURPOSES : This study aims to review the possibility of developing a road snow-melting system that can prevent slip accidents by maintaining a constant temperature of the winter roads and enhance performance of structures, including improvement of compressive strength by mixing carbon nanotube (hereafter referred to as CNT) with cement paste, the basic material. METHODS : To achieve the above purpose, an experiment was conducted by mixing power-type CNT and wrap-type CNT up to cement paste formulation by weight of 0.0wt%~4.1wt% in accordance with "KS L ISO 679(of cement strength test method)", and compressive strength was measured at 28 days of curing. In addition, the volume resistivity of the specimen was measured to test thermal and electrical characteristics, and the rate of temperature changes in specimen surface by power consumption was measured by passing electricity through the cross-sections of the specimen. Meanwhile, the criteria for checking the performance as a road snow-melting system was determined as volume resistivity of $100{\Omega}{\cdot}cm$ or less. RESULTS : A comparative analysis between specimen with 0wt% CNT content in plain status and specimen containing various types of CNTs was carried out. From its results, it was found that compressive strength increased approximately 19%, showing the highest rate when 0.2wt% of wrap-type CNT was contained, but volume resistivity of $100{\Omega}{\cdot}cm$ or less appeared only in specimens containing more than 0.2wt% CNT. In addition, it was observed that the surface temperature increased by $4.62^{\circ}C$ per minute on average in specimens containing 3.2wt% CNT. CONCLUSIONS : In this study, CNT was examined as an underlying material for a road snow-melting system, and the possibility of developing the road now-melting system was reviewed by conducting various experiments using CNT-Cement composites. From the experimental results, the specimens were found to have a superior performance when compared to the existing road snow-melting systems that place the heat transfer medium such as copper on the road. However, satisfactory strength performance were not obtained from the specimen containing CNT(2.0% or more) that functions as a heating element, which leads to the need for reviewing methods to increase the strength by using plasticizer or admixture.

Electrochemical Studies on the Corrosion Performance of Steel Embeded in Activated Fly Ash Blended Concrete (활성화된 플라이애쉬 혼입콘크리트의 철근부식거동에 관한 전기화학적 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn Chu;Velu, Saraswathy
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.97-108
    • /
    • 2008
  • The use of fly ash to replace a portion of cement has resulted significant savings in the cost of cement production. Fly ash blended cement concretes require a longer curing time and their early strength is low when compared to ordinary Portland cement(OPC) concrete. By adopting various activation techniques such as physical, thermal and chemical method, hydration of fly ash blended cement concrete was accelerated and thereby improved the corrosion-resistance of concrete. Concrete specimens prepared with 10-40% of activated fly ash replacement were evaluated for their open circuit potential measurements, weight loss measurements, impedance measurements, linear polarization measurements, water absorption test, rapid chloride ion penetration test and scanning electron microscopy (SEM) test and the results were compared with those for OPC concrete without fly ash. All the studies confirmed that up to a critical level of 20-30% replacement; activated fly ash cement improved the corrosion-resistance properties of concrete. It was also confirmed that the chemical activation of fly ash better results than the other methods of activation investigated in this study.

THE EFFECT OF FLOWABLE RESIN LINING ON THE MARGINAL MICROLEAKAGE OF CONDENSABLE RESIN RESTORATION (응축형 복합레진 수복시 유동성 레진 이장이 변연부 미세누출에 미치는 영향)

  • 문주훈;고근호
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • The purpose of this study was to evaluate the marginal microleakage of condensable composite resin restorations according to flowable resin lining of internal cavity wall. The eighty extracted human molar teeth without caries and/or restorations are used The experimental teeth were randomly assigned into four groups of ten teeth each. Eighty caries-free extracted human molars were used in this study. The conventional class II cavities (box-shaped on mesial and distal surface, faciolingual width : 3mm, gingival wall depth : 1.5mm) were prepared 1mm below cementoenamel junction with a # 701 carbide bur. The teeth were divided into four groups, and then each group were subdivided into A & B group according to flowable resin & compomer lining ; Group 1-A : Tetric Ceram filling, Group 1-B : Tetric Flow lining and Tetric Ceram filling, Group 2-A Ariston pHc filling, Group 2-B : Tetric Flow lining and Ariston pHc filing, Group 3-A SureFil filling, Group 3-B : Dyract Flow lining and SureFil filling, Group 4-A : Pyramid filling, Group 4-B : Aeliteflo lining and Pyramid filling. To simulate as closely as possible the clinical situation during retoration placement, a "restoration template" was fabricated, and the condensable resin was filled using a three-sited light-curing incremental technique. All the materials used were applied according to the manufacturers' instructions. The specimens were stored in the 100% humidity for 7 days prior to thermocycling (100 thermal cycles of 5~55$^{\circ}C$ water with a 30-second dwell time) The specimens were immersed in 2% metyleneblue dye for 24 hours, and then embedded in transparent acrylic resin and sectioned mesiodistally with diamond wheel saw. The degree of marginal leakage was scored under stereomicroscope ($\times$20) and the data were analyzed by Kruskal-Wallis test and Wilcoxon signed ranks test. The results were as follows : 1. In the gingival margins of all the group, microleakage of subgroup B was less than subgroup A. 2. In the group 1, 2, 4, there was significant differences between subgroup A and B (p<0.05), but in the group 3, there was not significant different between group 3-A (SureFil) and group 3-B (Dyract flow/SureFil) (p>0.05). 3. In the subgroup A and B, there was significant different between all group except group 4 of subgroup A. From the results above, it was suggested that the cavity lining of flowable resin and flowable compomer in condensable resin restoration decrease microleakage at gingival margin, and does improve their ability to seal the gingival margin of class II preparation.

  • PDF