• 제목/요약/키워드: Thermal Control Unit

검색결과 167건 처리시간 0.024초

정밀 용접용 펄스형 Nd:YAG 레이저 가공기 개발 (Development of a pulsed Nd:YAG laser materials processing system)

  • 김덕현;정진만;김철중;이종민
    • Journal of Welding and Joining
    • /
    • 제9권1호
    • /
    • pp.32-39
    • /
    • 1991
  • A 200W pulsed Nd: YAG laser for fine welding was developed. The important laser parameters such as laser peak power, average power, pulse width, and pulse energy for welding were studied. In order to obtain the sufficient laser power density for welding, thermal lensing effects were analyzed and a laser resonator with laser beam divergence was designed. The power supply unit was designed to support up to 7kW input. The pulse control unit was developed using a GTO thyristor and could control over 100kW input power to obtain 3.5kW peak power laser. Also due to the GTO thyristor the pulse width could be varied continuously from 0.1 to 20 msec and maximum repetition rate was as high as 300pps.

  • PDF

탄소복합재를 이용한 위성 패널의 열해석 (Thermal Analysis of Satellite Panel Using Carbon Composites)

  • 전형열;김정훈;박종석;박근주
    • 항공우주기술
    • /
    • 제10권2호
    • /
    • pp.114-120
    • /
    • 2011
  • 인공위성의 효율적인 열제어를 위해 알루미늄으로 만들어진 하니콤 패널과 OSR로 구성된 방열판을 사용한다. 또한 추가적으로 발열량이 많은 부품의 경우, 알루미늄으로 만들어진 더블러와 히트파이프 등을 이용하여 열제어를 수행한다. 최근 위성 전장 부품의 발열량의 증가로 정해진 위성의 크기, 발사 중량 및 비용으로 더 많은 열을 외부로 효율적으로 방출할 수 있는 방열 능력향상에 대한 필요성으로 새로운 열제어 물질에 대한 연구가 진행 중이다. 특히, 탄소 복합재는 일반적으로 열전도가 매우 높고, 가볍고, 기계적 강성에 좋은 특성이 있어 차세대 열제어를 위한 물질로 많은 연구가 진행되고 있다. 본 논문에서는 차세대 탄소 복합재인, APG(Annealed Pyrolytic Graphite)와 탄소-탄소 복합재(carbon-carbon composites)를 이용하여 통신패널의 열제어를 수행하는 경우와 기존의 열제어 방식과의 차이를 수치적으로 비교하였다.

Thermal and telemetry module design for satellite camera

  • Kong, Jong-Pil;Yong, Sang-Soon;Heo, Haeng-Pal;Kim, Young-Sun;Youn, Heong-Sik
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.229-234
    • /
    • 2002
  • Under the hostile influence of the extreme space environmental conditions due to the deep space and direct solar flux, the thermal control in space applications is especially of major importance. There are tight temperature range restrictions for electro-optical elements while on the other hand there are low power consumption requirements due to the limited energy sources on the spacecraft. So, we usually have strong requirement of thermal and power control module in space applications. In this paper, the design concept of a thermal and power control module in the MSC(Multi-Spectral Camera) system which will be a payload on KOMPSATII is described in terms of H/W & S/W. This thermal and power control module, called THTM(Thermal and Telemetry Module) in MSC, resides inside the PMU(Payload Management Unit) which is responsible for the proper management of the MSC payload for controlling and monitoring the temperature insides the EOS(Electro-Optic System) and gathering all the analog telemetry from all the MSC sub-units, etc. Particularly, the designed heater controller has the special mode of "duty cycle" in addition to normal closed loop control mode as usual. THTM controls heaters in open loop according to on/off set time designed through analysis in duty cycle mode in case of all thermistor failure whereas it controls heaters by comparing the thermistor value to temperature based on closed loop in normal mode. And a designed THTM provides a checking and protection method against the failure in thermal control command using the test pulse in command itself.

  • PDF

전열제어를 위한 충돌제트의 거리비에 따른 열전달특성에 관한 연구 (A Study on Heat Transfer Characteristics of Impinging Jet about Distance Ratio leer Thermal Control)

  • 김동균;김정환;배석태;김시범;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1237-1243
    • /
    • 2001
  • This paper presents an information about the heat transfer characteristics of impinging jet in eletronic equipment with infrared image processing unit. There have been many experimental investigations and theoretical studies on impinging jet because of application in a wide variety of industrial process including electronic equipment. In this study, we used infrared image processing unit to visualize heat transfer characteristics of impinging jet in eletronic equipment. Infrared image processing unit is one of non-contact temperature measuring methods and it is possible to minimize flow resistance and this measurement is comparatively accurate. The main parameters are distance between nozz1e and heat source. Reynolds number is 6000.

  • PDF

프리필 밸브의 거동 예측용 유압 시스템의 압력/유량 맥동 분석 (Pressure/Flow Pulsation Characteristics of the Hydraulic System for Behaviour Prediction of the Prefill Valve)

  • 박정우;하룬 아흐마드 칸;정은아;권성자;윤소남;이후승
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권2호
    • /
    • pp.1-8
    • /
    • 2021
  • In this work, a circuit with a hydraulic power unit is formulated as a means of predicting the behavior of the prefill valve in the future. The behavior of the prefill valve can be examined by the measurements of the configured power unit, and the performance is determined by using hydraulic pumps, relief valves, and hydraulic hoses that make up the power unit. In particular, pressure/flow pulsation generated by hydraulic pumps can cause instability in the prefill valve and cause noise-induced degradation of the overall performance and reliability of the hydraulic system containing the prefill valve. Therefore, to study the behavior and performance of the prefill valve in a relatively accurate manner, the prediction of the characteristics of the hydraulic power unit driving the prefill valve is very important. In this study, the pulsation characteristics of the hydraulic pump were analyzed to theoretically demonstrate its relationship with different settings of the power unit, such as relief valve pressure settings and the presence/absence of the hose.

인간의 열적 적응성을 고려한 퍼스널 공조시스템의 개발 (Study on the Personal Air-Conditioning System Considering Human Thermal Adaptation)

  • 송두삼
    • 설비공학논문집
    • /
    • 제15권6호
    • /
    • pp.524-532
    • /
    • 2003
  • In this paper, a personal air-conditioning system considering the human thermal adaptability is analyzed. Although the conventional personal air-conditioner was proofed to be satisfactory in providing for the thermal comfort, it is being questioned on the term of its energy efficiency. Therefore, it is important and urgent to develop new types of personal air-conditioning system with sustainable control strategy that can ensure energy saving and thermal comfort simultaneously. In this study, we first examined the problems of the conventional personal air-conditioning system with field interview and laboratory experiment in terms of usage, management and thermal comfort, and proposed the energy-saving personal air-conditioning system considering the human thermal adaptation. Then a laboratory experiment was performed to analyze the characteristics of the human thermal comfort under severe indoor thermal conditions, which were controlled using a new personal air-conditioning unit designed according to the proposal. The results help to illustrate the alleviation effect of the new personal air-conditioning system, and indicate that the thermal alleviation time is useful to maintain the thermal comfort with efficient usage of energy.

Spindle Design Technology for High Speed Machine Tools

  • Lee, Chan-Hong
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 Handout for 2000 Inter. Machine Tool Technical Seminar
    • /
    • pp.109-115
    • /
    • 2000
  • The spindle unit is core parts in high precision machine tools. Diverse static, dynamic and thermal charateristics of spindle unit are needed for special purpose of machine tools. Compromise between those charateristics will be done in concept design phase. High static stiffness at spindle nose may be very important performance for heavy cutting work. High dynamic stiffness is also useful to high precision and high speed machine tools. Improvement of thermal charateristics in spindle lead to high reliability of positioning accuracy. For high speed spindle structure, the design parameter such as, bearing span, diameter, bearing type and arrangement, preload, cooling and lubrication method should be in harmony.

  • PDF

통신해양기상위성의 전이궤도 열해석 (TRANSFER ORBIT THERMAL ANALYSIS FOR COMS)

  • 전형열;김정훈;김성훈;양군호
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.48-54
    • /
    • 2008
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean and meteorological observations. It will be launched by ARIANE 5. Ka-band components are installed on South panel, where single solar array wing is mounted. Radiators, embedded heat pipes, external heat pipe, insulation blankets and heaters are utilized for the thermal control of the satellite. The Ka-band payload section is divided several areas based on unit operating temperature in order to optimize radiator area and maximize heat rejection capability. Other equipment for sensors and bus are installed on North panel. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. During the transfer orbit operation, satellite will be under severe thermal environments due to low dissipation of components, satellite attitudes and LAE(Liquid Apogee Engine) firing. This paper presents temperature and heater power prediction and validation of thermal control design during transfer orbit operation.

위성의 전이궤도 열해석 (TRANSFER ORBIT THERMAL ANALYSIS FOR SATELLITE)

  • 전형열;김정훈;김성훈;양군호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.227-231
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication and ocean and meteorological observations. It will be launched by ARIANE 5. Ka-band components are installed on South panel, where single solar array wing is mounted. Radiators, embedded heat pipes, external heat pipe, insulation blankets and heaters are utilized for the thermal control of the satellite. The Ka-band payload section is divided several areas based on unit operating temperature in order to optimize radiator area and maximize heat rejection capability. Other equipment for sensors and bus are installed on North panel. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. During the transfer orbit operation, satellite will be under severe thermal environments due to low dissipation of components, satellite attitudes and LAE(Liquid Apogee Engine) firing. This paper presents temperature and heater power prediction and validation of thermal control design during transfer orbit operation.

  • PDF

발전소 과열증기 온도제어 시스템의 국산 DCS 적용에 관한 연구 (Study on application of domestic development DCS for S/H temp in the power plant)

  • 박익수;김은기;박성혁;이기원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.292-296
    • /
    • 1992
  • There are lots of disturbance in the super heater temperature control system of power plant boiler as follows. 1.Burner light off. 2.Excess Air. 3.Burner tilt. 4.G.R fan flow. Temperature control system of super heater in the power plant has delay time about 5 min. So it is difficult to control the super heater temperature in the power plant. This paper show us the application of domestic development DCS to control the super heater temperature in seoul #5 thermal power plant unit.

  • PDF