• Title/Summary/Keyword: Thermal Barrier Coatings

Search Result 116, Processing Time 0.025 seconds

Investigation of Characteristics for Cooling Parameters of a Combustor in Liquid Rocket Combustors (재생냉각 연소기의 냉각기구에 따른 특성 파악)

  • Kim, Hong-Jip;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.45-50
    • /
    • 2010
  • Thermal analyses have been performed to study the effect of location of fuel ring and thermal barrier coatings in regenerative cooling channels in a full-scale combustor. For the effective cooling, the fuel ring has better be installed near axial location of the low expansion ratio and low heat flux, and branching of cooling channels is preferable. Also, the radiative cooled nozzle extension is thought to be reasonable for the cooling of combustor walls. Among the possible coatings, $Y_2O_3$ stabilized $ZrO_2$ coating and Ni/Cr coating have been adopted. Compared with Ni/Cr coating which has high oxidation resistance, $Y_2O_3$ stabilized $ZrO_2$ coating, one of ceramic coatings is found to be much effective to sustain the thermal survivability of combustion walls.

Regenerative Cooling Characteristics for Cooling Parameters of a Combustor in Liquid Rocket Combustors (재생냉각 연소기의 냉각기구에 따른 냉각 특성 파악)

  • Kim, Hong-Jip;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.145-149
    • /
    • 2010
  • Thermal analyses have been performed to study the effect of location of fuel ring and thermal barrier coatings in regenerative cooling channels in a full-scale combustor. For the effective cooling, the fuel ring has better be installed near axial location of the low expansion ratio and low heat flux, and branching of cooling channels is preferable. Also, the radiative cooled nozzle extension is thought to be reasonable for the cooling of combustion walls. Among the possible coatings, $Y_2O_3$ stabilized $ZrO_2$ coating and Ni/Cr coating have been adopted. Compared with Ni/Cr coating which has high oxidation resistance, $Y_2O_3$ stabilized $ZrO_2$ coating, one of ceramic coatings is found to be much effective to sustain the thermal survivability of combustion walls.

  • PDF

Evaluation of a Bond Strength of Thermal Barrier Coating for Gas Turbine Blade (가스터빈 블레이드 열차폐 코팅의 접착강도 평가)

  • Kim, Dae-Jin;Lee, Dong-Hoon;Kim, Hyung-Ick;Kim, Mun-Young;Yang, Sung-Ho;Park, Sang-Yoel;Koo, Jae-Mean;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.195-199
    • /
    • 2007
  • In this study, bond strength tests were performed for the thermal barrier coating applied to the 1st stage turbine blade. After the tests, the specimens were cut and the locations of failure were observed by using optical microscope. The influence of heat treatment on bond strength of a bond coating and the difference among the three types of bond coatings are treated.

  • PDF

Phase formation and microstructural characteristics of ytterbium silicates coatings fabricated by plasma spraying with Ar/He gas compositions for environmental barrier coating applications (플라즈마용사로 증착된 환경차폐코팅 이터븀 실리케이트의 Ar/He 가스 조성에 따른 상형성 및 미세구조 특성)

  • Choi, Jae-Hyeong;Kim, Seongwon;Kim, Ji-Yoo;Moon, Hung Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.376-382
    • /
    • 2022
  • Yb2Si2O7 has a coefficient of thermal expansion similar to that of the base material of SiC and has excellent corrosion resistance in a high-temperature oxidizing atmosphere including water vapor, so it is being studied as one of the materials for environmental barrier coatings (EBCs). In this study, Yb2Si2O7 powder granule is deposited using atmospheric plasma spraying (APS) with different Ar/He ratios. Phase formation and microstructural characteristics are investigated with the coated specimens. In the coating layer, the crystallinity decreased, and the amorphous content increased from an increase in the ratio of Ar. In addition, the various types of particles involved by local volatilization of Si according to the Ar/He ratios were identified.

Lifetime Performance of EB-PVD Thermal Barrier Coatings with Coating Thickness in Cyclic Thermal Exposure

  • Lu, Zhe;Lee, Seoung Soo;Lee, Je-Hyun;Jung, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.571-576
    • /
    • 2015
  • The effects of coating thickness on the delamination and fracture behavior of thermal barrier coating (TBC) systems were investigated with cyclic flame thermal fatigue (FTF) and thermal shock (TS) tests. The top and bond coats of the TBCs were prepared by electron beam-physical vapor deposition and low pressure plasma spray methods, respectively, with a thickness ratio of 2:1 in the top and bond coats. The thicknesses of the top coat were 200 and $500{\mu}m$, and those of the bond coat were 100 and $250{\mu}m$. FTF tests were performed until 1140 cycles at a surface temperature of $1100^{\circ}C$ for a dwell time of 5 min. TS tests were also done until more than 50 % delamination or 1140 cycles with a dwell time of 60 min. After the FTF for 1140 cycles, the interface microstructures of each TBC exhibited a sound condition without cracking or delamination. In the TS, the TBCs of 200 and $500{\mu}m$ were fully delaminated (> 50 %) within 171 and 440 cycles, respectively. These results enabled us to control the thickness of TBC systems and to propose an efficient coating in protecting the substrate in cyclic thermal exposure environments.

Fracture Behavior of Ceramic Coatings Subjected to Thermal Shock (열충격에 의한 세라믹코팅재의 파괴거동)

  • Han, Ji-Won
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.39-43
    • /
    • 2003
  • An experimental study was conducted to develop and understanding of fracture behavior of ceramic thermal barrier coating when subjected to a thermal shock loading. The thermal loading was applied using a 1.5kW $CO_2$ laser. In the experiments, beam-shaped specimens were subjected to a high heat flux for 4sec and cooling of 7sec in air. The interface crack length was increased as the crack density, the surface pre-crack legth and the coating thickness were increased. The center surface crack length was increased as the maximum surface temperature got higher and the surface pre-crack length for shorter.

Effects of Spraying Conditions on the Porosity and Hardness of Plasma Sprayed MgO Stabilized Zirconic Thermal Barrier Coatings (Plasma 용사된 MgO 안정화 지르코니아 단열피복의 기공도와 경도에 미치는 용사조건의 영향)

  • Park, Yeong-Gyu;Choe, Guk-Seon;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.85-94
    • /
    • 1992
  • The size, morphology and distribution of pores which affect on the physical properties of thermal barrier coatings were investigated to find the relationship with spraying parameters. The plasma-sprayed zirconia coatings contained numerous micropores as well as macropores which were appeared as spherical and irregular pores, and cracks. The pore formation process and its characteristics were varied with spraying distance. Porosity itself was varied with spraying parameters such as spray gun current, gas flow rate and the gas used(Ar or $N_2). The Porosity of coatings was ranged from 10 to 18% with the variation of spraying conditions. The relative hardness measured by the scratch test, showed strong dependence on the porosity of coatings rather than spraying parameters.

  • PDF

Fabrication and Characterization of La2Zr2O7/YSZ Double-Ceramic-Layer Thermal Barrier Coatings Fabricated by Suspension Plasma Spray (서스펜션 플라즈마 용사법을 이용한 La2Zr2O7/YSZ 2층세라믹 열차폐코팅의 제조와 특성평가)

  • Kwon, Chang-Sup;Lee, Sujin;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.315-321
    • /
    • 2015
  • Rare-earth zirconates, such as $La_2Zr_2O_7$ and $Gd_2Zr_2O_7$, have been investigated as one of the candidates for replacing conventional yttria-stabilized zirconia (YSZ) for thermal barrier coating (TBC) applications at higher turbine inlet temperatures. In this study, double-ceramic-layer (DCL) TBCs of YSZ 1st layer and $La_2Zr_2O_7$ top coat layer are fabricated by suspension plasma spray with serial liquid feeders. Microstructures, hardness profiles, and thermal durability of DCL-TBCs are also characterized. Fabricated DCL-TBCs of YSZ/$La_2Zr_2O_7$ exhibit excellent properties, such as adhesion strength (>25 MPa) and electrical thermal fatigue (~1429 cycles), which are comparable with TBCs fabricated by atmospheric plasma spray.

Phase Formation and Thermo-physical Properties of Lanthanum/Gadolinium Zirconate with Reduced Rare-earth Contents for Thermal Barrier Coatings (열차폐코팅을 위한 희토류가 저감된 란타눔/가돌리늄 지르코네이트의 상형성 및 열물성)

  • Lee, Sujin;Kwon, Chang-Sup;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Nahm, Sahn;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.420-425
    • /
    • 2015
  • Rare-earth zirconates, such as lanthanum zirconates and gadolinium zirconates, have been intensively investigated due to their excellent properties of low thermal conductivity as well as chemical stability at high temperature, which can make these materials ones of the most promising candidates for next-generation thermal barrier coating applications. In this study, three compositions, lanthanum/gadolinium zirconates with reduced rare-earth contents from stoichiometric $RE_2Zr_2O_7$ compositions, are fabricated via solid state reaction as well as sintering at $1600^{\circ}C$ for 4 hrs. The phase formation, microstructure, and thermo-physical properties of three oxide ceramics are examined. In particular, each oxide ceramics exhibits composite structures between pyrochlore and fluorite phases. The potential of lanthanum/gadolinium zirconate ceramics for TBC applications is also discussed.