• 제목/요약/키워드: Thermal Balance

검색결과 348건 처리시간 0.025초

Progresses on the Optimal Processing and Properties of Highly Porous Rare Earth Silicate Thermal Insulators

  • Wu, Zhen;Sun, Luchao;Wang, Jingyang
    • 한국세라믹학회지
    • /
    • 제55권6호
    • /
    • pp.527-555
    • /
    • 2018
  • High-temperature thermal insulation materials challenge extensive oxide candidates such as porus $SiO_2$, $Al_2O_3$, yttria-stabilized zirconia, and mullite, due to the needs of good mechanical, thermal, and chemical reliabilities at high temperatures simultaneously. Recently, porous rare earth (RE) silicates have been revealed to be excellent thermal insulators in harsh environments. These materials display attractive properties, including high porosity, moderately high compressive strength, low processing shrinkage (near-net-shaping), and very low thermal conductivity. The current critical challenge is to balance the excellent thermal insulation property (extremely high porosity) with their good mechanical properties, especially at high temperatures. Herein, we review the recent developments in processing techniques to achieve extremely high porosity and multiscale strengthening strategy, including solid solution strengthening and fiber reinforcement methods, for enhancing the mechanical properties of porous RE silicate ceramics. Highly porous RE silicates are highlighted as emerging high-temperature thermal insulators for extreme environments.

HAUSAT-2 소형위성 열해석 검증 및 보드-레벨 열해석 (THERMAL ANALYSES AND VERIFICATION FOR HAUSAT-2 SMALL SATELLITE)

  • 이미현;김동운;장영근
    • Journal of Astronomy and Space Sciences
    • /
    • 제23권1호
    • /
    • pp.39-54
    • /
    • 2006
  • HAUSAT-2는 한국항공대학교 우주시스템 연구실에서 개발하고 있는 25kg급의 소형위성 이다. 위성의 시스템과 부품의 안정적인 작동을 확인하기 위하여 위성의 시스템과 박스모듈 그리고 전장보드 수준에서 열해석을 수행하였다. 시스템과 박스-레벨 열해석에 적용한 열 모델링은 HAUSAT-2 구조-열 모델의 열진공/균형 시험을 통하여 검증 및 보정되었다. 본 연구에서는 주요 소자를 직접 모델링하는 방법의 보드-레벨 열해석 방법론을 제안하고, 그에 따른 결과 분석 및 타당성을 제시하였다.

원통형셀 기반 직렬배터리팩의 외형(정사/직사면체) 차이에 의한 내부 열분포 기초해석 (Inner Temperature Distribution by Two Appearances of Series-Cell Configured Battery Pack using Cylindrical Cells)

  • 한동호;이평연;박진형;김종훈;유기수;조인호
    • 전력전자학회논문지
    • /
    • 제23권6호
    • /
    • pp.408-414
    • /
    • 2018
  • Given that lithium-ion batteries are expected to be used as power sources for electric and hybrid vehicles, thermodynamics experimentation and prediction based on experimental data were performed. Thermal, electrochemical, and electrochemical/electrical-thermal models were used for accurate battery modeling. Various applications of different battery packs were demonstrated, and thermal analysis was performed using the same experimental conditions for square and rectangular battery packs. Accurate thermal analysis for a single cell should be prioritized to determine the thermal behavior of the battery pack. The energy balance equation, which contains heat generation and heat transfer factors, defines the thermal behavior of the battery pack. By comparing battery packs of different shapes tested under the same condition, this study revealed that the rectangular battery pack is superior to the square battery pack in terms of the maximum temperature of inner cells and temperature variation between cells.

고토크 복합재 프로펠러 샤프트 개발에 관한 연구 (A Study on the Development of High Torque Composite Propeller Shaft)

  • 박지상;황경정;김태욱;윤형석
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.22-26
    • /
    • 2002
  • The goal of this study is to replace the current forward 2-piece propeller shaft of 8 ton large truck made of steel with 1-piece composite propeller shaft. A low cost Glass/Epoxy composite propeller shafts were successfully developed, which satisfy requirements such as the capacity of static torque transfer, fatigue strength and bending natural frequency. Devising secure joining method of a composite tube and metal yoke was the most critical issue in successful development of a high torque composite propeller shaft. In this study, joining method using thermal interference fit was adopted for composite to metal joint. Optimum conditions of heating temperature and interference level of thermal interference fit were determined from thermal stress analysis using 3D finite element method. Static torsion test, fatigue test, RPM and balance test were performed to verify the design.

  • PDF

A Modification of Departure from Nucleate Boiling Model Based on Mass, Energy, and Momentum Balance For Subcooled Flow Boiling in Vertical Tubes

  • Sul, Young-Sil;Lee, Kwang-Won;Ju, Kyong-In;Cheong, Jong-Sik;Yang, Jae-Young
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.108-113
    • /
    • 1996
  • Several analytical models for the departure from nucleate boiling (DNB) phenomenon have been developed during the last decade. Among these, Chang & Lee's model based on a bubble crowding mechanism is remarkable in the fundamental features characterized as the formulation of mass, energy, and momentum balance equation at thermal-hydraulic conditions leading to the DNB. However, Bricard and Souyri remarked that the assumption of stagnant bubbly layer at the DNB condition is questionable and the signs on the axial projections of the momentum fluxes at the core/bubbly layer interface in the momentum balance equations are erroneous. From this remark, Chang & Lee's model has been re-examined and modified by correcting the erroneous treatments in the momentum balance equations and removing the spurious assumptions. The revised model predicts well the extensive DNB data of water in uniformly heated tubes at low qualities and shows more accurate prediction compared with the original model.

  • PDF

발전소 복수기 배열회수의 지역난방 및 연료라인 예열용 활용타당성 검토 (Feasibility Study on Thermal Power Plant Condenser Heat Recovery for District Heating and Fuel Line Preheating)

  • 정훈;황광원
    • 신재생에너지
    • /
    • 제5권3호
    • /
    • pp.40-48
    • /
    • 2009
  • Recovered heat has been considered as a renewable energy in Europe since 2008 because its great effect on energy saving and carbon decreasing in plant process. Energy saving and decreasing green gas are critical issue today, so various technologies to save energy and decrease carbon dioxide in plant process have been applied to many industrial area. In this paper, the feasibility of condenser heat recovery by heat pump in power plant for district heating and fuel line preheating were reviewed by verifying energy (heat) balance and mass balance of power plant model. Some ways to compose proper system to recover heat of condenser are suggested and their possibilities are also reviewed. Limitations on heat recovery in power plant are also reviewed. The results are verified by calculating input/output energy based on actual performance test data of Taean Thermal Power Plant in Korea. There is noticeable improvement of plant performance in some cases which demand low temperature (<100 C) heat like distrcit heating, fuel line heating, and so forth.

  • PDF

분무된 금속액적의 급속응고과정에 관한 열전달 해석 (Heat Transfer Analysis on the Rapid Solidification Process of Atomized Metal Droplets)

  • 안종선;박병규;안상호
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2404-2412
    • /
    • 1994
  • A mathematical model has been developed for predicting kinematic, thermal, and solidification histories of atomized droplets during flight. Liquid droplet convective cooling, recalescence, equilibrium-state solidification, and solid-phase cooling were taken into account in the analysis of the solidification process. The spherical shell model was adopted where the heterogeneous nucleation is initiated from the whole surface of a droplet. The growth rate of the solid-liquid interface was determined from the theory of crystal growth kinetics with undercooling caused by the rapid solidification. The solid fraction after recalescence was obtained by using the integral method. The thermal responses of atomized droplets to gas velocity, particle size variation, and degree of undercooling were investigated through the parametric studies. It is possible to evaluate the solid fraction of the droplet according to flight distance and time in terms of a dimensionless parameter derived from the overall energy balance of the system. It is also found that the solid fraction at the end of recalescence is not dependent on the droplet size and nozzle exit velocity but on the degree of subcooling.

열전달 및 물질전달을 이용한 공극 발열도로에서의 융설 해석에 대한 이론적 연구 (Theoretical Study on Snow Melting Process on Porous Pavement System by using Heat and Mass Transfer)

  • 윤태영
    • 한국도로학회논문집
    • /
    • 제17권5호
    • /
    • pp.1-10
    • /
    • 2015
  • PURPOSES : A finite difference model considering snow melting process on porous asphalt pavement was derived on the basis of heat transfer and mass transfer theories. The derived model can be applied to predict the region where black-ice develops, as well as to predict temperature profile of pavement systems where a de-icing system is installed. In addition, the model can be used to determined the minimum energy required to melt the ice formed on the pavement. METHODS : The snow on the porous asphalt pavement, whose porosity must be considered in thermal analysis, is divided into several layers such as dry snow layer, saturated snow layer, water+pavement surface, pavement surface, and sublayer. The mass balance and heat balance equations are derived to describe conductive, convective, radiative, and latent transfer of heat and mass in each layer. The finite differential method is used to implement the derived equations, boundary conditions, and the testing method to determine the thermal properties are suggested for each layer. RESULTS: The finite differential equations that describe the icing and deicing on pavements are derived, and we have presented them in our work. The framework to develop a temperature-forecasting model is successfully created. CONCLUSIONS : We conclude by successfully creating framework for the finite difference model based on the heat and mass transfer theories. To complete implementation, laboratory tests required to be performed.

Development of a Drought Detection Indicator using MODIS Thermal Infrared Data

  • Park, Sun-Yurp
    • 대한원격탐사학회지
    • /
    • 제20권1호
    • /
    • pp.1-11
    • /
    • 2004
  • Based on surface energy balance climatology, surface temperatures should respond to drying conditions well before plant response. To test this hypothesis, land surface temperatures (LST) derived from MODIS data were analyzed to determine how the data were correlated with climatic water balance variables and NDVI anomalies during a growing season in Western and Central Kansas. Daily MODIS data were integrated into weekly composites so that each composite data set included the maximum temperature recorded at each pixel during each composite period. Time-integrated, or cumulative values of the LST deviation standardized with mean air temperatures had significantly high correlation coefficients with SM, AE/PE, and MD/PE, ranging from 0.65 to 0.89. The Standardized Thermal Index (STI) is proposed in this study to accomplish the objective. The STI, based on surface temperatures standardized with observed mean air temperatures, had significant temporal relationships with the hydroclimatological factors. STI classes in all the composite periods also had a strong correlation with NDVI declines during a drought episode. Results showed that, based on LST, air temperature observations, and water budget analysis, NDVI declines below normal could be predicted as early as 8 weeks in advance in this study area.

도시 내부 하천 복원에 의한 열 환경의 시공간적 변화 (Spatiotemporal Changes of the Thermal Environment by the Restoration of an Inner-city Stream)

  • 권태헌;김규랑;변재영;최영진
    • 환경영향평가
    • /
    • 제18권6호
    • /
    • pp.321-330
    • /
    • 2009
  • Spatiotemporal changes in the thermal environment in a large city, Seoul, Korea were analyzed using a thermal index, perceived temperature (PT), to standardize the weather conditions. PT is a standard index for the thermal balance of human beings in thermophysiological environment. For the analysis of PT, the data from long-term monitoring and intensive observations in and around the inner-city stream called 'Cheonggye' in Seoul, were compared with a reference data from the Seoul weather station. Long-term data were monitored by installing two automatic weather stations at 66m (S1) and 173m (S2) away from the center of the stream. Through the analysis of the data during the summer of 2006 and intensive observation periods, it was revealed that the stream's effects on the PT extended up to the distance of the S1 site. In winter, the increase of the PT between pre- and post-restoration was stronger at S1, which was nearer than S2 from the stream. These results suggest that PT can be used as an effective model in analyzing the changes of the thermal environment in relation with the changes of water surface areas.