• Title/Summary/Keyword: Thermal Aging Treatment

Search Result 86, Processing Time 0.027 seconds

Influence of Thermal Aging at the Interface Cu/sn-Ag-Cu Solder Bump Made by Electroplating (전해도금에 의해 형성된 Sn-Ag-Cu 솔더범프와 Cu 계면에서의 열 시효의 영향)

  • Lee, Se-Hyeong;Sin, Ui-Seon;Lee, Chang-U;Kim, Jun-Gi;Kim, Jeong-Han
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.235-237
    • /
    • 2007
  • In this paper, fabrication of Sn-3.0Ag-0.5Cu solder bumping having accurate composition and behavior of intermetallic compounds(IMCs) growth at interface between Sn-Ag-Cu bumps and Cu substrate were studied. The ternary alloy of the Sn-3.0Ag-0.5Cu solder was made by two binary(Sn-Cu, Sn-Ag) electroplating on Cu pad. For the manufacturing of the micro-bumps, photo-lithography and reflow process were carried out. After reflow process, the micro-bumps were aged at $150^{\circ}C$ during 1 hr to 500 hrs to observe behavior of IMCs growth at interface. As a different of Cu contents(0.5 or 2wt%) at Sn-Cu layer, behavior of IMCs was estimated. The interface were observed by FE-SEM and TEM for estimating of their each IMCs volume ratio and crystallographic-structure, respectively. From the results, it was found that the thickness of $Cu_3Sn$ layer formed at Sn-2.0Cu was thinner than the thickness of that layer be formed Sn-0.5Cu. After aging treatment $Cu_3Sn$ was formed at Sn-0.5Cu layer far thinner.

  • PDF

Effects of Electroacupuncture on the Regulation of Chemokine Induced Spinal Activation of Microglia in the Rat Model of Neuropathic Pain (흰쥐 신경병증성 통증 모델에서 전침이 케모카인이 유도하는 척수 교세포 활성화 조절에 미치는 영향)

  • Sindhuri, Vishnumolakala;Lee, Ji Eun;Park, Hye-Ji;Kim, So-Hee;Koo, Sungtae
    • Korean Journal of Acupuncture
    • /
    • v.36 no.4
    • /
    • pp.264-273
    • /
    • 2019
  • Objectives : Microglia play a crucial role in electroacupuncture (EA) analgesia on neuropathic pain. The role of chemokines in producing analgesic effects of EA, however, is largely unknown. In the present study, we investigated the role of chemokines in producing analgesic effects of EA in the neuropathic pain model. Methods : Sprague-Dawley rats were randomly assigned into three groups (anesthetized group (ANE), non-acupoint EA group (NAP), and ST36 - GB34 EA group (ACU)). Neuropathic pain was induced by tight ligation of L5 spinal nerve. Mechanical and thermal hypersensitivity of hind paw was tested. Western blot tests and immunofluorescence assay for C-C motif chemokine ligand 2 (CCL2) levels and microglia activation were performed on spinal cord L5/6. EA was treated once daily from the 3rd day after surgery for 5 days. Results : EA treatments applied to ST36 and GB34 significantly reduced both mechanical and thermal hypersensitivity after two and three times of treatment, respectively. While CCL2 expression significantly increased in neuropathic rats, it was significantly reduced in the ACU. In addition, co-localization of CCL2 and activated microglia significantly decreased in the ACU compared to those of ANE and NAP in the spinal cord L5/L6 dorsal horn. Conclusions : The present results suggest that EA applied to ST36 and GB34 modulates the reduction of CCL2 release from the injured neurons and consequently decreases microglia activation in the spinal cord. Regulation of chemokine induced spinal activation of microglia plays a key role in analgesic effects of EA in the rat model of neuropathic pain.

Characterization of Low-cycle Fatigue of Copper and Isothermal Aging of 2.25Cr Ferritic Steel by Ultrasonic Nonlinearity Parameter (초음파 비선형파라미터를 이용한 무산소동 저주기피로와 2.25Cr 페라이트강의 등온열화 평가)

  • Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.239-245
    • /
    • 2022
  • The purpose of this study is to evaluate the degree of microstructural change of materials using ultrasonic nonlinear parameters. For microstructure change, isothermal heat-treated ferritic 2.25Cr steel and low-cycle fatigue-damage copper alloy were prepared. The variation in ultrasonic nonlinearity was analyzed and evaluated through changes in hardness, ductile-brittle transition temperature, electron microscopy, and X-ray diffraction tests. Ultrasonic nonlinearity of 2.25Cr steel increased rapidly during the first 1,000 hours of deterioration and then gradually increased thereafter. The variation in non-linear parameters was shown to be coarsening of carbides and an increase in the volume fraction of stable M6C carbides during heat treatment. Due to the low-cycle fatigue deformation of oxygen-free copper, the dislocation that causes lattice deformation developed in the material, distorting the propagating ultrasonic waves, and causing an increase in the ultrasonic nonlinear parameters.

Thermal Stability and Dry Sliding Wear Behavior of Ultra-Fine Grained 6061 Al Alloy Processed by the Accumulative Roll-Bonding Process (누적압연접합 공정에 의해 제조된 초미세립 6061 Al 합금의 열적 안정성과 건식 미끄럼 마멸 거동)

  • Kim Y.S.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.71-77
    • /
    • 2005
  • Thermal stability and dry sliding wear behavior of ultra-fine grained 6061 Al alloy fabricated by an accumulative roll-bonding (ARB) process have been investigated. After 4 ARB cycles, an ultra-fine grained microstructure of the 6061 Al alloy composed of grains with average size of 500nm, and separated mostly by high-angle boundaries was obtained. Though hardness and tensile strength of the ARB processed Al alloy increased with ARB cycles up to 4 cycles, the processed alloy exhibited decreased ductility and little strain hardening. Thermal stability of the ARB-processed microstructure was studied by annealing of the severely deformed alloy at $423K{\sim}573K$. The refined microstructure of the alloy remained stable up to 473K, and the peak aging treatment of the alloy at 450K for 8 hrs increased the thermal stability of the alloy. Sliding-wear rates of the alloy increased with the number of ARB cycles in spite of the increased hardness with the cycles. Wear mechanisms of the ultra-fine grained alloy were investigated by examining worn surfaces, wear debris, and cross-sections by a scanning electron microscopy (SEM).

Study on the Synthesis and thermal Characteristics of Nano Porous Silica Powder (나노세공 실리카 분말의 합성과 열적 특성에 관한 연구)

  • 김종길;박진구;김호건
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.365-369
    • /
    • 2002
  • Silica hydrogel was synthesized by the reaction of liquid sodium silicate with sulfuric acid. The condensation polymerization of the synthesized hydrogel was carried out via an aging process under the acidic or alkaline conditions. Nano porous silica with the pore size below 3 nm and surface area of $715m^2/g$, was obtained by the above processes in acidic ranges(pH : 3~5). The pore size and surface area of the silica varied with pH, and in alkaline ranges(pH : 8~10), those were 21 nm and $300m^2/g$ respectively. The characteristics of the silica varied with the thermal treatment which caused the change of surface area, pore volume and pore diameter.

Decomposition Behavior of Secondary Solidification Phase During Heat Treatment of Squeeze Cast Al-Cu-Si-Mg (용탕단조 Al-Cu-Si-Mg합금의 열처리시 제2응고상의 분해거동)

  • Kim, Yu-Chan;Kim, Do-Hyang;Han, Yo-Sub;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.560-568
    • /
    • 1997
  • The dissolution behavior of secondary solidification phases in squeeze cast Al-3.9wt%Cu-1.5wt%Si-1.0wt%Mg has been studied using a combination of optical microscope, image analyzer, scanning electron microscope(SEM), energy dispersive spectrometer(EDS), X-ray diffractometer(XRD) and differential thermal analyzer (DTA). Special emphasis was placed on the investigation of the effects of the nonequilibrium heat treatment on the dissolution of the second solidification phases. Ascast microstructure consisted of primary solidification product of ${\alpha}-Al$ and secondary solidification products of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$. Equilibrium and non-equilibrium solution treatments were carried out at the temperatures of $495^{\circ}C$, $502^{\circ}C$ and $515^{\circ}C$ for 3 to 5 hours. The amount of the dissolved secondary phases increased with increasing solution treatment temperature, for example, area fractions of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$ were approximately 0%, 1.6% and 4.2% after solution treatment at $495^{\circ}C$ for 5hours, and were approximately 0%, 0.36% and 2% after solution treatment at $515^{\circ}C$ for 5hours. The best combination of tensile properties was obtained when the as-cast alloy was solution treated at $515^{\circ}C$ for 3hours followed by aging at $180^{\circ}C$ for 10 hours. Detailed DTA and TEM study showed that the strengthening behavior during aging was due to enhanced precipitation of the platelet type fine ${\theta}'$ phase.

  • PDF

A Study on the Thermal Degradation Properties of Epoxy Resin for Cast Resin Transformer (몰드변압기용 에폭시 수지의 열 열화특성에 관한 연구)

  • Lim, Kyung-Bum;Nam, Ki-Dong;Kim, Ki-Hwan;Park, Su-Hong;Hwang, Myung-Hwan
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.44-48
    • /
    • 2008
  • In this paper, we measured a contact angle, surface resistivity and XPS to study the thermal aging characteristics of the epoxy resin for cast resin transformer. As a result of this experiment, we found that the contact angle increases up to $200^{\circ}C$ as it causes a re-crosslinking on the surface, but starts decreasing at $250^{\circ}C$ as it causes heat condensation. As a result of examining the oxygen/carbon peaks through the XPS analysis, we obtained a higher oxygen peak vs. carbon in the first untreated sample, but it showed the opposite trend after heat treatment. That rise in the carbon peak continued up to $200^{\circ}C$, but decreased again at the temperatures above. That's because it kept forming a stable surface structure up to $200^{\circ}C$ but its carbon combination got destroyed due to a rapid oxidization at $250^{\circ}C$. And a conduction path was formed easily with the hydrophile property caused by rapid surface activation.

Simultaneous Combination Treatment Using High-Intensity Focused Ultrasound and Fractional Carbon Dioxide Laser Resurfacing for Facial Rejuvenation

  • Kang, Hee Yong;Park, Eun Soo;Nam, Seung Min
    • Medical Lasers
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2019
  • Background and Objectives High-intensity focused ultrasound (HIFU) can produce small zones of thermal damage. A HIFU procedure is non-invasive and it can achieve rejuvenation of facial skin. Fractional CO2 laser resurfacing delivers thermal damage to the pixilated columnar zone of the skin and so evoke collagen remodeling, the same as HIFU. In many cases, the patients who want rejuvenation with HIFU are also good candidates for cutaneous photorejuvenation such as can be accomplished via fractional CO2 resurfacing. If patients are treated in a single session by remodeling both the superficial and deep compartments of skin by using both modalities, then improvement in rhytides and tightening of sagging skin will optimize the aesthetic result. Materials and Methods Between May 2014 and January 2018, a total of 44 patients were treated with combination HIFU and fractional CO2 laser resurfacing according to our protocol. First, the HIFU was applied to the entire face with an average of 300 treatment lines. Immediately after HIFU treatment, the ultrasound gel was washed off and then fractional CO2 laser resurfacing was performed. We evaluated the patients using 4-point grading scales. The clinician examined the skin for evidence of complications after the completion of treatment. Results All the patients' skin quality showed improvement. Further. the clinical results after duel modality treatment were substantially better than that after the use of either modality alone. The recovery times and the incidence of adverse events when quickly and consecutively performing both treatments were similar as compared to those with employing stepwise treatment. We encountered no complications whatsoever. Conclusion When compared with stepwise therapy, combination therapy with HIFU and fractional CO2 resurfacing offers better, safer and more effective clinical results. Thus, for targeting multiple layers of aging facial skin, this combination therapy can be safely performed in a single treatment session.

Preparation of Porous Cordierite by Using Water-Vapour Treatment (수증기처리공정에 의한 다공성 코디어라이트의 제조)

  • 문교태;서신석;노재성;조득희;김동표
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.986-992
    • /
    • 1997
  • Cordierite ceramic was prepared by sol-gel method. It was analyzed by Infrared spectroscopy and X-ray diffraction patterns that the ceramic was chemically mixed in molecular level and transformed to $\alpha$-cordierite at 125$0^{\circ}C$. Water vapour treatments for aging and drying process were conducted to get porous cordierite with thermally stable pore structure. It resulted in 220-410 $m^2$/g BET surface area and mesoporous structure with mean pore diameter, 40$\AA$. Compared to naturally dried ceramic, the ceramic showed superior thermal stability of surface area up to $700^{\circ}C$. Surfaces of porous cordierite ceramics were observed by SEM.

  • PDF

Thermal Resistance and daf-16 Regulation of Fermented Zizyphus jujuba Fruits in Caenorhabditis elegans

  • Yu, Young-Bob
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.645-650
    • /
    • 2020
  • The mechanism of anti-aging of fermented jujube (Zizyphus jujuba fruits (ZJF)) was investigated using transgenic daf-16 and mev-1 strains of C. elegans. Jujube extracts fermented for 7 days (F7-ZJF) and 14 days (F14-ZJF) with Laetiporus sulphureus were treated to a NGM agar plate with 10-15 transgenic daf-16 and mev-1 strains of the synchronized age. There was no difference of lifespan between the drug-treated group (7-day fermented ex. (F7-zjf-200 ㎍/mL), 14-day fermented ex. (F14-zjf-200 ㎍/mL)) and the non-treatment group in both daf-16 and mev-1 strains. In the thermal stress experiment, F7-zjf-200 ㎍/mL showed a significant (t = 4.017) activity in thermal stress resistance with a 12% higher survival rate than the control group. In the survival test in H2O2, F7-zjf-200 ㎍/mL and F14-zjf-100 ㎍/mL have significant activity in oxidative stress resistance compared to the control group. This study indicates that life span expand of N2 strain of the jujube extract is related to the regulation of daf-16 and inhibition of mev-1 signal in C. elegans.