• Title/Summary/Keyword: Therapy Beam

Search Result 735, Processing Time 0.032 seconds

IMRT optimization on multiple slice using gradient based algorithm (Gradient based algorithm을 이용한 multiple slice IMRT optimization)

  • Lee, Byung-Yong;Cho, Byung-Chul;Lee, Seok;Jung, Won-Kyun;An, Seung-Do;Choi, Eun-Kyung;Kim, Jong-Hoon;Jang, Hye-Sook
    • Progress in Medical Physics
    • /
    • v.9 no.4
    • /
    • pp.201-206
    • /
    • 1998
  • IMRT optimization method on multiple slice has been developed by using gradient based algorithm. On about 10-30 CT slices including treatment region of a patient, dose optimization has been performed slice by slice to meet the condition that each organ should be exposed below maximum tolerable doses and that the tumor dose within the range of 100$\pm$5 %. Field size was limited to 8$\times$8 cm$^2$ and in this condition, beam divergence was not taken into account to calculate dose distribution. Total dose distribution was calculated by superposing each beamlet whose dose distribution had been precalculated. In order to investigate beam number dependency, dose optimization was performed for one, three, five, seven, and nine coplanar beams and then each optimization index was evaluated. It is found that optimization time was proportional to number of slices to be optimized, and the most efficient plan was obtained from the case of three-to-seven incident beams with respect to calculation time and optimization index. In conclusion, dose optimization of multiple slice was able to be obtained by repeating dose optimization of single slice under condition that the beam size is not too large to ignore beam divergence. And it turns out that result of dose optimization was so sensitive to the position of isocenter that some method to optimize isocenter position is needed to improve it.

  • PDF

Analysis of Photon Characteristics and Absorbed Dose with Cone Beam Computed Tomography (CBCT) using Monte Carlo Method (몬테칼로 기법을 이용한 CBCT의 광자선 특성 및 선량 분석)

  • Kim, Jong-Bo;Kim, Jung-Hoon;Park, Eun-Tae
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.161-169
    • /
    • 2017
  • The cone beam computed tomography(CBCT) which can acquire 3-dimensions images is widely used for confirmation of patient position before radiation therapy. In this study, through the simulation using the Monte Carlo technique, we will analyze the exposure dose by cone beam computed tomography and present the standardized data. For the experiment, MCNPX(ver. 2.5.0) was used and the photon beam spectrum was analyzed after Cone beam was simulated. As a result of analyzing the photon beam spectrum, the average energy ranged from 25.7 to 37.6 keV at the tube voltage of 80 ~ 120 kVp and the characteristic X-ray energy was 9, 60, 68 and 70 keV. As a result of using the water phantom, the percentage depth dose was measured, and the maximum dose appeared on the surface and decreased with depth. The absorbed dose also decreased as the depth increased. The absorbed dose of the whole phantom was 9.7 ~ 18.7 mGy. This is a dose which accounts for 0.2% of about 10 Gy, which is generally used for radiation therapy per week, which is not expected to have a significant effect on the treatment effect. However, it should not be overlooked even if it is small compared with prescription dose.

A Consideration on the Characteristics of Electron Beam Dose Distributions for Clinical Applications (임상적용을 위한 전자선의 선량분포 특성에 대한 고찰)

  • Cha, Dong-Soo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.65-69
    • /
    • 2010
  • High energy electron beams were to concentrically dose inside a tumor and more energy is a shape decreased of dose. Therefore, it is useful to radiation therapy of a tumor. Also high energy electron beams ionized into collision with a atom in structure material of tissue and it has big changes to dose distribution by multiple scattering. The study had to establish characteristic of electron beams from interaction of electron beams and materials. Experiment method was to measure dependence of electron beam central axis for depth dose curve, field flatness and symmetry and field size dependence. The results were able to evaluate data for a datum pint of electron beam. Also radiotherapy has to be considered for not only energy pencil of lines but characteristic, electron guide and isodose curves distribution.

  • PDF

Economic Scale of Radiation Application in Japan

  • Kume, Tamikazu
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.191-196
    • /
    • 2011
  • The economic scale of nuclear application is a good indicator to show how the radiation technology is useful and contribute to improve public welfare and living standard. Recent research in Japan shows that the economic scale of nuclear field was 4,112 B¥ for radiation application(46%) and 4,741 B¥ for nuclear energy (54%) playing a role of "two wheels of one cart" in nuclear field and the total 8,853 B¥ constitutes 1.8% of gross domestic products (GDP). The radiation application consisted of 2,295 B¥ (56%) in industry (semiconductor, sterilization, nondestructive testing, radiation processing of tires, etc.), 1,538 B¥ (37%) in medicine (therapy and diagnosis such as X-ray, nuclear medicine, computed tomography, etc.) and 279 B¥ (7%) in agriculture (mutation breeding, food irradiation, sterile insect technique, etc.). Radiation application by ${\gamma}$-ray, electron beam and ion beam is steadily increasing in Japan.

Measurement of Dose Distribution in Small Beams of Philips 6 and 8 MVX Linear Accelerator (Philips LINAC 6 MV와 8 MV X선 소조사연에 대한 선량분포 측정)

  • Suh Tae-suk;Yoon Sei Chul;Shinn Kyung Sub;Park Yong Whee
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.143-152
    • /
    • 1991
  • The work suggested in this paper addresses a method for collecting beam data for small circular fields. Beam data were obtained from philips 6 and 8 MV LINAC at Dept. Radiation Therapy at Gainesville Incorporated and Shands Teaching Hospital. Specific quantities measured include tissue maximum ratio (TMR), off-axis ratio (OAR) and relative output factor (ROF) In small field irradiation, special collimators were used to produce circular fields of 1 cm to 3 cm diameter in 2 mm steps, measured at SAO (soura axis distance) of 100 cm. Diode detector was chosen for primary beam measurement and compared with measurements made with photographic film and TLD dosimeters. The measured TMRs and OARs were formulated from limited measurements to generate basic beam data for reference set-up. The empirical formula were later, extended and generalized for any possible set-up using the trends of fitting parameters. The measured TMRs and OARs were well represented by the fitting formula developed.

  • PDF

The Emission and Characteristics Measurement of Electron Beam and Basis Construction for Education Usage (전자빔 인출 및 빔 계측과 교육 활용을 위한 기반구축)

  • Lee, Dong-Hoon
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.257-264
    • /
    • 2007
  • The MM22 microtron has used as a cancer therapy machine from Nov. 1986 to Feb. 2006. This machine was moved and installed to a radiation research center to use as an education and research tool from treatment machine because of aging of MM22 microtron. In this paper, for extracting the electron beam from microtron, operation principle of the microtron, system characteristics of each module, and pulse structures were reviewed. The beam extraction and measurement were performed after measuring pulses of each major module and extraction trials in the beam line. After finishing the movement of MM22 microtron, the 30mA target current in the case of 10 MV X-ray beam was extracted and the beam flatness of radiation distribution was acquired within 3% error ratio after 100 MU was irradiated on X-omatV Film at SSD 100 cm and field size $10{\times}10cm^2$. As a result, the microtron movement and new installation was performed with success.

  • PDF

In vitro and in vivo Biological Responses of Proton Irradiation from MC-50 Cyclotron

  • Jung, Uhee;Eom, Hyeon Soo;Jeong, Kwon;Park, Hae-Ran;Jo, Sung-Kee
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.223-229
    • /
    • 2012
  • In this study, we investigated the biological damage and stress responses induced by ion beam (proton beam) irradiation as a basis for the development of protective measures against space radiation. We examined the biological effects of proton beam produced by MC-50 cyclotron at KIRAMS on the cultured cells and mice. The proton beam energy used in this study was 34.9 MeV and the absorption dose rate for cells and mice were $0.509Gy\;sec^{-1}$ and $0.65Gy\;sec^{-1}$, respectively. The cell survival rates measured by plating efficiency showed the different sensitivity and dose-relationship between CHO cells and Balb/3T3 cells. HGPRT gene mutation frequency in Balb/3T3 was $15{\times}10^{-6}Gy^{-1}$, which was similar to the reported value of X-ray. When stress signaling proteins were examined in Balb/3T3 cells, $I{\kappa}B-{\alpha}$ decreased markedly whereas p53, phospho-p53, and Rb increased after proton beam irradiation, which implied that the stress signaling pathways were activated by proton beam irradiation. In addition, cellular senescence was induced in IMR-90 cells. In the experiments with C57BL/6 mouse, the immune cells (white blood cells, lymphocytes) in the peripheral blood were greatly reduced following proton beam irradiation whereas red blood cells and platelets showed relatively little change. These results can be utilized as basic data for studying the biological effects of proton beam using MC-50 cyclotron with respect to proton therapy research as well as space radiation research.