• Title/Summary/Keyword: Therapeutic hypothermia

Search Result 20, Processing Time 0.026 seconds

Nursing Frequency, Nursing Time, and Nursing Intervention Priorities depending on Neonatal Therapeutic Hypothermia Methods (신생아 저체온치료방법에 따른 간호활동 빈도와 간호시간 및 간호중재)

  • Kim, Dong Yeon;Jo, Kyung A;Yi, Bo Ram;Park, Ho Ran
    • Child Health Nursing Research
    • /
    • v.24 no.4
    • /
    • pp.517-526
    • /
    • 2018
  • Purpose: This study compared nursing frequency, nursing time, and nursing intervention priorities depending on the method of neonatal induced hypothermia. Methods: We observed 15 neonatal subjects receiving therapeutic hypothermia for 3 days each. Forty-five nurses experienced with nursing neonatal patients under therapeutic hypothermia provided responses about nursing intervention priorities. Analyses with the chi-square, the Fisher exact test, the paired t-test, the Wilcoxon signed rank test, and the Wilcoxon rank-sum test were performed on the data using SAS version 9.4. Results: The frequency of nursing activities was higher for selective head therapeutic hypothermia (SHTH) than for systemic therapeutic hypothermia (STH), and nursing time was also significantly longer. In terms of nursing intervention priorities, there were priority differences in "risk for ineffective thermoregulation" and "risks for impaired skin integrity" for SHTH compared to STH. Conclusion: Since SHTH for neonatal therapeutic hypothermia requires more nursing time and frequent nursing activities than STH, STH is therefore recommended if the therapeutic efficacy is similar. Appropriate nursing personnel should be allocated for neonatal SHTH nursing. Nurses should be aware of nursing interventions for therapeutic hypothermia as the priorities are different for different methods of neonatal therapeutic hypothermia.

Incidence of Peripheral Cyanosis in Patients with Therapeutic Hypothermia after Cardiac Arrest in the Acute Care Unit of a Tertiary General Hospital (일개 상급종합병원 응급중환자실 내 심정지 후 저체온요법을 적용한 환자의 말초 청색증 발생 현황)

  • Bang, Soo Youn;Yi, Young Hee
    • Journal of Korean Critical Care Nursing
    • /
    • v.14 no.3
    • /
    • pp.128-140
    • /
    • 2021
  • Purpose : This study aimed to identify the incidence of peripheral cyanosis and the characteristics and clinical results of patients with therapeutic hypothermia after a cardiac arrest. Methods : Data were collected from April to June 2021 via the electrical medical records of 95 patients with therapeutic hypothermia for 72 hours after a cardiac arrest admitted to an acute care unit at a tertiary hospital between January 1, 2016, and December 31, 2019. The data were analyzed using descriptive statistics and a t-test, Mann-Whitney U test, Chi-squared test, Fisher's exact test, and logistic regression using SPSS/WIN. Results : The incidence of peripheral cyanosis was 20%. In the peripheral cyanosis group, peripheral vascular disease, fibrinogen, vasopressor, infection, disseminated intravascular coagulation, acute physiology, chronic health evaluation II score on the second hospital day, nursing intervention, and mortality on the seventh hospital day were higher. The level of fibrinogen and use of vasopressors affected the occurrence of peripheral cyanosis. Conclusion : Considering the influencing variables, careful observation is necessary for patients with high fibrinogen levels and vasopressor use. These results provide basic data to recognize the need for nursing intervention for peripheral cyanosis and encourage nurses to deliver them during therapeutic hypothermia.

Complete Recovery of Perfusion Abnormalities in a Cardiac Arrest Patient Treated with Hypothermia: Results of Cerebral Perfusion MR Imaging

  • Kim, Min Jeong;Park, Yae Won;Lim, Soo Mee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.56-60
    • /
    • 2018
  • Therapeutic hypothermia in cardiac arrest patients is associated with favorable outcomes mediated via neuroprotective mechanisms. We report a rare case of a 32-year-old male who demonstrated complete recovery of signal changes on perfusion-weighted imaging after therapeutic hypothermia due to cardiac arrest. Brain MRI with perfusion-weighted imaging, performed three days after ending the hypothermia therapy, showed a marked decrease in relative cerebral blood flow (rCBF) and delay in mean transit time (MTT) in the bilateral basal ganglia, thalami, brain stem, cerebellum, occipitoparietal cortex, and frontotemporal cortex. However, no cerebral ischemia was not noted on diffusion-weighted imaging (DWI) or fluid-attenuated inversion recovery (FLAIR) sequences. A follow-up brain MRI after one week showed complete resolution of the perfusion deficit and the patient was discharged without any neurologic sequelae. The mechanism and interpretation of the perfusion changes in cardiac arrest patients treated with therapeutic hypothermia are discussed.

Effects of Posttraumatic MgSO4 Injection and Hypothermia an Animal Model of Traumatic Brain Injury(TBI) (실험적 외상성 뇌손상모델에서 외상 후 저체온과 MgSO4의 효과)

  • Han, Seong Rok;Hyun, Dong Keun;Park, Chong Oon;Ha, Young Soo;Kim, Joon Mee
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.10
    • /
    • pp.1296-1302
    • /
    • 2000
  • Objective : Traumatic brain injury including diffuse axonal injury has been shown to result in a decrease in brainfree magnesium concentration, an endogenous inhibitor of calcium entry into neuron, that is associated with the development of neurological motor deficits. The goal of this study is to establish the therapeutic window during which the therapy with $MgSO_4$ and/or hypothermia improve damaged neurons by TUNEL stain. Method : Moderate brain injury was induced in 64 adult Sprague-Dawley rats, weighing 350 to 450gm each, by using a simple weight-drop device(Marmarou model). The animals were randomly assigned to four groups(sixteen rats each, a control group, a group treated with $MgSO_4$, a group treated with hypothermia, and a group treated with $MgSO_4$ and hypothermia) and the rats in each group were sacrificed and studied after 12 hrs, 24 hrs, 1 wk, and 2 wks after insult. In hypothermic group, these rats were subjected to hypothermia after injury, with their rectal temperatures maintained at $32^{\circ}C$ for 1 hour. After 1-hour period of hypothermia, rewarming to normothermic level was accomplished over 30-minute period. In the groups treated $MgSO_4$, hypothermia and $MgSO_4$ were subsequently treated with $MgSO_4$($750{\mu}moles/kg$) infused intra-muscularly at 30 minutes after trauma. Result : In all treated groups, a significant reduction in TUNEL positive cells was found in comparison with the control group each time(p<0.001). Between treatment groups, No differnce was seen 12hrs, 24hrs, and 1wk. However, hypothermic group treated with or without $MgSO_4$ showed more significant reduction in apoptotic cells than group treated with $MgSO_4$ 2 weeks after trauma(p<0.05). However, hypothermic group treated with $MgSO_4$ showed no significant reduction in apoptotic cells compared with hypothermic group(p>0.05). Conclusion : These findings suggest that both hypothermia and $MgSO_4$ significantly improve pathological changes. Otherwise simultaneously $MgSO_4$ and hypothermia treatment groups is failed to provide additional neuroprotection. These results may be relevant to the design of future clinical trials of therapeutic hypothermia and $MgSO_4$ for traumatic brain injury.

  • PDF

A Case of Successful Resuscitation of 10,150 J Shocks and Therapeutic Hypothermia on Aconitine-induced Cardiovascular Collapse (10,150 J의 심장조율동과 치료적 저체온법으로 소생한 중증 초오 중독 환자 1례)

  • Moon, Hyung Jun;Lee, Jung Won;Kim, Ki Hwan;Jeong, Dong Kil;Kim, Jong Ho;Kim, Young Ki;Lee, Hyun Jung
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.12 no.2
    • /
    • pp.97-101
    • /
    • 2014
  • Aconitine, found in the Aconitum species, is highly extremely toxic, and has been known to cause fatal cardiac arrhythmias and cardiovascular collapse. Although several reports have described treatment of aconitine intoxication, management strategy for the patient in a hemodynamically compromised state who experienced cardiopulmonary collapse is unknown. We report here on a case of a successful cardiopulmonary resuscitation and therapeutic hypothermia in an aconitine-induced cardiovascular collapsed patient. A 73-year-old male who presented with nausea, vomiting, chest discomfort, and drowsy mental state after eating an herbal decoction made from aconite roots was admitted to the emergency department. He showed hemodynamic compromise with monomorphic ventricular tachycardia resistant to amiodarone and lidocaine. After 3 minutes on admission, he collapsed, and cardiopulmonary resuscitation was initiated. We treated him with repeated cardioversion/defibrillation of 51 times, 10,150 joules and cardiopulmonary resuscitation of 12 times, 69 minutes for 14 hours and therapeutic hypothermia for 36 hours. He recovered fully in 7 days.

  • PDF

Effects of carnosine and hypothermia combination therapy on hypoxic-ischemic brain injury in neonatal rats

  • Byun, Jun Chul;Lee, Seong Ryong;Kim, Chun Soo
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.8
    • /
    • pp.422-429
    • /
    • 2021
  • Background: Carnosine has antioxidative and neuroprotective properties against hypoxic-ischemic (HI) brain injury. Hypothermia is used as a therapeutic tool for HI encephalopathy in newborn infants with perinatal asphyxia. However, the combined effects of these therapies are unknown. Purpose: Here we investigated the effects of combined carnosine and hypothermia therapy on HI brain injury in neonatal rats. Methods: Postnatal day 7 (P7) rats were subjected to HI brain injury and randomly assigned to 4 groups: vehicle; carnosine alone; vehicle and hypothermia; and carnosine and hypothermia. Carnosine (250 mg/kg) was intraperitoneally administered at 3 points: immediately following HI injury, 24 hours later, and 48 hours later. Hypothermia was performed by placing the rats in a chamber maintained at 27℃ for 3 hours to induce whole-body cooling. Sham-treated rats were also included as a normal control. The rats were euthanized for experiments at P10, P14, and P35. Histological and morphological analyses, in situ zymography, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays, and immunofluorescence studies were conducted to investigate the neuroprotective effects of the various interventional treatments. Results: Vehicle-treated P10 rats with HI injury showed an increased infarct volume compared to sham-treated rats during the triphenyltetrazolium chloride staining study. Hematoxylin and eosin staining revealed that vehicle-treated P35 rats with HI injury had decreased brain volume in the affected hemisphere. Compared to the vehicle group, carnosine and hypothermia alone did not result in any protective effects against HI brain injury. However, a combination of carnosine and hypothermia effectively reduced the extent of brain damage. The results of in situ zymography, TUNEL assays, and immunofluorescence studies showed that neuroprotective effects were achieved with combination therapy only. Conclusion: Carnosine and hypothermia may have synergistic neuroprotective effects against brain damage following HI injury.

Cognitive outcomes in late childhood and adolescence of neonatal hypoxic-ischemic encephalopathy

  • Lee, Bo Lyun;Glass, Hannah C.
    • Clinical and Experimental Pediatrics
    • /
    • v.64 no.12
    • /
    • pp.608-618
    • /
    • 2021
  • Hypoxic-ischemic encephalopathy (HIE) is the most common cause of neonatal encephalopathy with a global incidence of approximately 1 to 8 per 1,000 live births. Neonatal encephalopathy can cause neurodevelopmental and cognitive impairments in survivors of hypoxic-ischemic insults with and without functional motor deficits. Normal neurodevelopmental outcomes in early childhood do not preclude cognitive and behavioral difficulties in late childhood and adolescence because cognitive functions are not yet fully developed at this early age. Therapeutic hypothermia has been shown to significantly reduced death and severe disabilities in term newborns with HIE. However, children treated with hypothermia therapy remain at risk for cognitive impairments and follow-up is necessary throughout late childhood and adolescence. Novel adjunctive neuroprotective therapies combined with therapeutic hypothermia may enhance the survival and neurodevelopmental outcomes of infants with HIE. The extent and severity of brain injury on magnetic resonance imaging might predict neurodevelopmental outcomes and lead to targeted interven tions in children with a history of neonatal encephalopathy. We provide a summary of the long-term cognitive outcomes in late childhood and adolescence in children with a history of HIE and the association between pattern of brain injury and neurodevelopmental outcomes.

Hypothermia alleviates hypoxic ischemia-induced dopamine dysfunction and memory impairment in rats

  • Ko, Il-Gyu;Cho, Han-Jin;Kim, Sung-Eun;Kim, Ji-Eun;Sung, Yun-Hee;Kim, Bo-Kyun;Shin, Mal-Soon;Cho, Seh-Yung;KimPak, Young-Mi;Kim, Chang-Ju
    • Animal cells and systems
    • /
    • v.15 no.4
    • /
    • pp.279-286
    • /
    • 2011
  • Hypoxic ischemia injury is a common cause of functional brain damage, resulting from a decrease in cerebral blood flow and oxygen supply to the brain. The main problems associated with hypoxic ischemia to the brain are memory impairment and dopamine dysfunction. Hypothermia has been suggested to ameliorate the neurological impairment induced by various brain insults. In this study, we investigated the effects of hypothermia on memory function and dopamine synthesis following hypoxic ischemia to the brain in rats. For this purpose, a step-down avoidance task, a radial eight-arm maze task, and immunohistochemistry for tyrosine hydroxylase (TH) and 5-bromo-2'-deoxyuridine (BrdU) were performed. The present results indicated that the hypoxic ischemia-induced disturbance of the animal's performances and spatial working memory was associated with a decrement in TH expression in the substantia nigra and striatum, and an increase in cell proliferation in the hippocampal dentate gyrus. Hypothermia treatment improved the animals' performance and spatial working memory by suppressing the decrement in TH expression in the substantia nigra and striatum and the increase in cell proliferation in the dentate gyrus. We suggest that hypothermia can be an efficient therapeutic modality to facilitate recovery following hypoxic ischemia injury to the brain, presumably by modulating the dopaminergic cell loss.

Hypothermia Effect on Apoptotic Neuronal Death in Traumatic Brain Injury Model

  • Yoo, Do-Sung;Lee, Soon-Kyu;Huh, Pil-Woo;Han, Young-Min;Rha, Hyung-Kyun;Kim, Dal-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.3
    • /
    • pp.215-220
    • /
    • 2005
  • Objective : Many researchers believe that the hypothermia shows neuro-protective effect on brain injury. To understand the molecular mechanism of the hypothermic treatment, this study investigated its effects on the expression of cell death or survival related proteins such as p53, Bcl-2 and Bax in the rat traumatic brain injury[TBI] model. Methods : Twenty rats [Spraque Dawley, $200{\sim}250g$] were subjected to the brain injury of moderate severity [$2.4{\sim}2.6atm$] using the fluid percussion injury device and five rats were received only same surgery as controls. During 30minutes after the brain injury, the hypothermia group was maintained the body temperature around $34^{\circ}C$ while the control group were maintained that of $36^{\circ}C$. Five rats in each group were sacrificed 12h or 24h after brain injury and their brain sections was analyzed for physical damages by H-E stains and the extent of apoptosis by TUNEL assay and immunohistochemical stains. The tissue damage after TBI was mainly observed in the ipsilateral cortex and partly in the hippocampus. Results : Apoptosis was observed by TUNEL assay and the Bax protein was detected in both sample which harvested 12h and 24h after TBI. In the hypothermia treatment group, tissue damage and apoptosis were reduced in HE stains and TUNEL assay. In hypothermia treatment group rat shows more expression of the Bcl-2 protein and shows less expression of the Bax protein, at both 12h and 24h after TBI. Conclusion : These results show that the hypothermia treatment is an effective treatment after TBI, by reducing the apoptotic process. Therefore, it could be suggested that hypothermia has a high therapeutic value for treating tissue damages after TBI.