• Title/Summary/Keyword: Therapeutic candidate

Search Result 270, Processing Time 0.026 seconds

Application of Bioinformatics for the Functional Genomics Analysis of Prostate Cancer Therapy

  • Mousses, Spyro
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.74-82
    • /
    • 2000
  • Prostate cancer initially responds and regresses in response to androgen depletion therapy, but most human prostate cancers will eventually recur, and re-grow as an androgen independent tumor. Once these tumors become hormone refractory, they usually are incurable leading to death for the patient. Little is known about the molecular details of how prostate cancer cells regress following androgen ablation and which genes are involved in the androgen independent growth following the development of resistance to therapy. Such knowledge would reveal putative drug targets useful in the rational therapeutic design to prevent therapy resistance and control androgen independent growth. The application of genome scale technologies have permitted new insights into the molecular mechanisms associated with these processes. Specifically, we have applied functional genomics using high density cDNA microarray analysis for parallel gene expression analysis of prostate cancer in an experimental xenograft system during androgen withdrawal therapy, and following therapy resistance, The large amount of expression data generated posed a formidable bioinformatics challenge. A novel template based gene clustering algorithm was developed and applied to the data to discover the genes that respond to androgen ablation. The data show restoration of expression of androgen dependent genes in the recurrent tumors and other signaling genes. Together, the discovered genes appear to be involved in prostate cancer cell growth and therapy resistance in this system. We have also developed and applied tissue microarray (TMA) technology for high throughput molecular analysis of hundreds to thousands of clinical specimens simultaneously. TMA analysis was used for rapid clinical translation of candidate genes discovered by cDNA microarray analysis to determine their clinical utility as diagnostic, prognostic, and therapeutic targets. Finally, we have developed a bioinformatic approach to combine pharmacogenomic data on the efficacy and specificity of various drugs to target the discovered prostate cancer growth associated candidate genes in an attempt to improve current therapeutics.

  • PDF

Wheat phytase can alleviate the cellular toxic and inflammatory effects of lipopolysaccharide

  • An, Jeongmin;Cho, Jaiesoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.114-124
    • /
    • 2021
  • The objective of this study was to characterize the enzymatic hydrolysis of lipopolysaccharide (LPS) by wheat phytase and to investigate the effects of wheat phytase-treated LPS on in vitro toxicity, cell viability and release of a pro-inflammatory cytokine, interleukin (IL)-8 by target cells compared with the intact LPS. The phosphatase activity of wheat phytase towards LPS was investigated in the presence or absence of inhibitors such as L-phenylalanine and L-homoarginine. In vitro toxicity of LPS hydrolyzed with wheat phytase in comparison to intact LPS was assessed. Cell viability in human aortic endothelial (HAE) cells exposed to LPS treated with wheat phytase in comparison to intact LPS was measured. The release of IL-8 in human intestinal epithelial cell line, HT-29 cells applied to LPS treated with wheat phytase in comparison to intact LPS was assayed. Wheat phytase hydrolyzed LPS, resulting in a significant release of inorganic phosphate for 1 h (p < 0.05). Furthermore, the degradation of LPS by wheat phytase was nearly unaffected by the addition of L-phenylalanine, the inhibitor of tissue-specific alkaline phosphatase or L-homoarginine, the inhibitor of tissue-non-specific alkaline phosphatase. Wheat phytase effectively reduced the in vitro toxicity of LPS, resulting in a retention of 63% and 54% of its initial toxicity after 1-3 h of the enzyme reaction, respectively (p < 0.05). Intact LPS decreased the cell viability of HAE cells. However, LPS dephosphorylated by wheat phytase counteracted the inhibitory effect on cell viability. LPS treated with wheat phytase decreased IL-8 secretion from intestinal epithelial cell line, HT-29 cell to 14% (p < 0.05) when compared with intact LPS. In conclusion, wheat phytase is a potential therapeutic candidate and prophylactic agent for control of infections induced by pathogenic Gram-negative bacteria and associated LPS-mediated inflammatory diseases in animal husbandry.

Searching for Novel Candidate Small Molecules for Ameliorating Idiopathic Pulmonary Fibrosis: a Narrative Review

  • Kyung-il Kim;Rajib Hossain;Xin Li;Hyun Jae Lee;Choong Jae Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.484-495
    • /
    • 2023
  • Idiopathic pulmonary fibrosis (IPF) can be defined as a progressive chronic pulmonary disease showing scarring in the lung parenchyma, thereby resulting in increase in mortality and decrease in the quality of life. The pathophysiologic mechanism of fibrosis in IPF is still unclear. Repetitive microinjuries to alveolar epithelium with genetical predisposition and an abnormal restorative reaction accompanied by excessive deposition of collagens are involved in the pathogenesis. Although the two FDA-approved drugs, pirfenidone and nintedanib, are under use for retarding the decline in lung function of patients suffered from IPF, they are not able to improve the survival rate or quality of life. Therefore, a novel therapeutic agent acting on the major steps of the pathogenesis of disease and/or, at least, managing the clinical symptoms of IPF should be developed for the effective regulation of this incurable disease. In the present review, we tried to find a potential of managing the clinical symptoms of IPF by natural products derived from medicinal plants used for controlling the pulmonary inflammatory diseases in traditional Asian medicine. A multitude of natural products have been reported to exert an antifibrotic effect in vitro and in vivo through acting on the epithelial-mesenchymal transition pathway, transforming growth factor (TGF)- β-induced intracellular signaling, and the deposition of extracellular matrix. However, clinical antifibrotic efficacy of these natural products on IPF have not been elucidated yet. Thus, those effects should be proven by further examinations including the randomized clinical trials, in order to develop the ideal and optimal candidate for the therapeutics of IPF.

Oral Administration of Poly-Gamma-Glutamic Acid Significantly Enhances the Antitumor Effect of HPV16 E7-Expressing Lactobacillus casei in a TC-1 Mouse Model

  • Kim, Eunjin;Yang, Jihyun;Sung, Moon-Hee;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1444-1452
    • /
    • 2019
  • The conventional prophylactic vaccines for human papillomavirus (HPV) efficiently prevent infection with high-risk HPV types, but they do not promote therapeutic effects against cervical cancer. Previously, we developed HPV16 E7-expressing Lactobacillus casei (L. casei-E7) as a therapeutic vaccine candidate for cervical cancer, which induces antitumor therapeutic effects in a TC-1 murine cancer model. To improve the therapeutic effect of L. casei-E7, we performed co-treatment with poly-gamma-glutamic acid (${\gamma}-PGA$), a safe and edible biomaterial naturally secreted by Bacillus subtilis. We investigated their synergistic effect to improve antitumor efficacy in a murine cancer model. The treatment with ${\gamma}-PGA$ did not show in vitro cytotoxicity against TC-1 tumor cells; however, an enhanced innate immune response including activation of dendritic cells was observed. Mice co-administered with ${\gamma}-PGA$ and L. casei-E7 showed significantly suppressed growth of TC-1 tumor cells and an increased survival rate in TC-1 mouse models compared to those of mice vaccinated with L. casei-E7 alone. The administration of ${\gamma}-PGA$ markedly enhanced the activation of natural killer (NK) cells but did not increase the E7-specific cytolytic activity of $CD8^+$ T lymphocytes in mice vaccinated with L. casei-E7. Overall, our results suggest that oral administration of ${\gamma}-PGA$ induces a synergistic antitumor effect in combination with L. casei-E7.

Inhibition Effect of Human Cytomegalovirus Replication by Peptide nucleic acids (PNA)

  • Park, Young-Doo;Eum, Jin-Seong;Paik, Soon-Young;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.971-975
    • /
    • 2008
  • Human cytomegalovirus (HCMV) provokes fatal infections in AIDS patients that have deficient immune functions and patients that have cellular immune responses repressed after bone marrow transplantation. A new candidate for therapeutic against HCMV is needed because conventional treatments as ganciclovir, acyclovir, cidofovir, and foscarnet cytosine used currently are improper due to their side effects and advent of resistant HCMV. In this study, peptide nucleic acids (PNAs) against UL54 (DNA polymerase) and UL97 (phosphotransferase) that were essential in replication of HCMV were applied in inhibition of replication of HCMV. From the results of this study, 4 PNAs $_{PNA}UL97-1$, $_{PNA}UL97-2$, $_{PNA}UL54-3$, and $_{PNA}UL54-4$ showed 3.7, 3.1, 1.7, and 1.6 folds of inhibition effect against replication of HCMV in the human fibroblast cells. These PNA suggest a novel possibility as therapeutic against HCMV.

  • PDF

Atorvastatin: In-Vivo Synergy with Metronidazole as Anti-Blastocystis Therapy

  • Basyoni, Maha M.A.;Fouad, Shawky A.;Amer, Marwa F.;Amer, Ahmed Fathy;Ismail, Dalia Ibrahim
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.2
    • /
    • pp.105-112
    • /
    • 2018
  • Blastocystis is an enteric Straminopile in tropical, subtropical and developing countries. Metronidazole has been a chemotheraputic for blastocystosis. Failures in its regimens were reported and necessitate new studies searching for alternative therapeutic agents. Aim of current study is to investigate potential effects of Atorvastatin (AVA) compared to the conventional chemotherapeutic MTZ in experimentally Blastocystis-infected mice. Anti-Blastocystis efficacy of AVA was evaluated parasitologically, histopathologically and by transmission electron microscopy using MTZ (10 mg/kg) as a control. Therapeutic efficacy of AVA were apparently dose-dependent. Regimens of AVA (20 and 40 mg/kg) proved effective against Blastocystis infections with highreduction in Blastocystis shedding (93.4-97.9%) compared to MTZ (79.3%). The highest reductions (98.1% and 99.4%)were recorded in groups of combination treatments AVA 20-40 mg/kg and MTZ 10 mg/kg. Blastocystis was nearly eradicated by the 20th day post infection. Genotype analysis revealed that genotype I was most susceptible, genotype III was less. Histopathologic and ultrastructural studies revealed apoptotic changes in Blastocystis and significant improvement of intestinal histopathological changes more remarkable in combinational therapy groups. Thus, the present study offers AVA as a potential candidate for Blastocystis therapy combined with MTZ.

A comprehensive review of the therapeutic effects of Hericium erinaceus in neurodegenerative disease

  • Kim, Young Ock;Lee, Sang Won;Kim, Jin Seong
    • Journal of Mushroom
    • /
    • v.12 no.2
    • /
    • pp.77-81
    • /
    • 2014
  • Mushrooms are considered not only as food but also for source of physiologically beneficial medicines. The culinary-medicinal mushrooms may important role in the prevention of age-associated neurological dysfunctions, including Alzheimer's and Parkinson's diseases. Hericium erinaceus (H. erinaceus), is edible mushrooms, is a parasitic fungus that grows hanging off of logs and trees and well established candidate for brain and nerve health. H. erinaceus contains high amounts of antioxidants, beta-glucan, polysaccharides and a potent catalyst for brain tissue regeneration and helps to improve memory and cognitive functions. Its fruiting bodies and the fungal mycelia exhibit various pharmacological activities, including the enhancement of the immune system, antitumor, hypoglycemic and anti-aging properties. H. erinaceus stimulates the synthesis of Nerve Growth Factor (NGF) which is the primary protein nutrient responsible for enhancing and repairing neurological disorders. Especially hericenones and erinacines isolated from its fruitin body stimulate NGF, synthesis. This fungus is also utilized to regulate blood levels of glucose, triglycerides and cholesterol. H. erinaceus can be considered as useful therapeutic agents in the management and/or treatment of neurodegeneration diseases. However, this review focuses on in vitro, in vivo and clinical trials for neurodegerative disease.

Screening of Differential Promoter Hypermethylated Genes in Primary Oral Squamous Cell Carcinoma

  • Khor, Goot Heah;Froemming, Gabrielle Ruth Anisah;Zain, Rosnah Binti;Abraham, Mannil Thomas;Thong, Kwai Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8957-8961
    • /
    • 2014
  • Background: Promoter hypermethylation leads to altered gene functions and may result in malignant cellular transformation. Thus, identification of biomarkers for hypermethylated genes could be useful for diagnosis, prognosis, and therapeutic treatment of oral squamous cell carcinoma (OSCC). Objectives: To screen hypermethylated genes with a microarray approach and to validate selected hypermethylated genes with the methylation-specific polymerase chain reaction (MSPCR). Materials and Methods: Genome-wide analysis of normal oral mucosa and OSCC tissues was conducted using the Illumina methylation microarray. The specified differential genes were selected and hypermethylation status was further verified with an independent cohort sample of OSCC samples. Candidate genes were screened using microarray assay and run by MSPCR analysis. Results: TP73, PIK3R5, and CELSR3 demonstrated high percentages of differential hypermethylation status. Conclusions: Our microarray screening and MSPCR approaches revealed that the signature candidates of differentially hypermethylated genes may possibly become potential biomarkers which would be useful for diagnostic, prognostic and therapeutic targets of OSCC in the near future.

The Efficacy of Shikonin on Cartilage Protection in a Mouse Model of Rheumatoid Arthritis

  • Kim, Young-Ock;Hong, Seung-Jae;Yim, Sung-Vin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.4
    • /
    • pp.199-204
    • /
    • 2010
  • The potential therapeutic action of shikonin in an experimental model of rheumatoid arthritis (RA) was investigated. As a RA animal model, DBA/1J mice were immunized two times with type II collagen. After the second collagen immunization, mice were orally administered shikonin (2 mg/kg) once a day for 35 days, and the incidence, clinical score, bone mineral density (BMD), bone mineral content (BMC) and joint histopathology were evaluated. BMD in the proximal regions of the tibia largely increased in the shikonin treatment group compared with the control group. We also examined the effect of shikonin on inflammatory cytokines and cartilage protection. Shikonin treatment significantly reduced the incidence and severity of collagen-induced arthritis (CIA), markedly abrogating joint swelling and cartilage destruction. Shikonin also significantly inhibited the production of matrix metalloproteinase (MMP)-1 and up-regulated tissue inhibitors of metalloproteinase (TIMP)-1 in mice with CIA. In conclusion, shikonin exerted therapeutic effects through regulation of MMP/TIMP; these results suggest that shikonin is an outstanding candidate as a cartilage protective medicine for RA.

Studies on the Treatment and Prevention of Dementia by Green-Tea extracts (녹차(綠茶)추출물에 의한 치매 치료 및 예방에 관한 연구)

  • Lim, Jong-Soon
    • Journal of Haehwa Medicine
    • /
    • v.12 no.1
    • /
    • pp.11-26
    • /
    • 2003
  • Alzheimer's disease (AD) is characterized by amyloid deposition and associated loss of neunons in brain regions involved in learning and memory processes. Several causes of evidence support that the congnitive disturbance is closed associated with the deficit of cerebral acetylcholine neurotransmission, and the effect of carboxyl terminal 105 amino acid fragment (CT105) of the amyloid precursor protein (APP) on the gene expression of proinflammatory cytokines. We tested it on the scopolamine-induced amnesia model of the ICR mouse using the Morris water maze with repeated orally administration of 1st Green-Tea extract (200 mg/kg) and 2nd Green-Tea extract (200 mg/kg). The Green-Tea prevents impairment of learning and memory and neuronal loss in mouse models of cognitive disturbance and it demonstrated selectivity for inhibition of acetylcholinesterase (AChE). Furthermore, the repeated administration of Green-Tea, CT105-induced alzheimer's mouse model showed central cholinergic activity by ameliorates learning and memory impairment, and isolation of CD14 microglia showed significantly decreases intracellular release of the proinflammatory cytokines tumor necrosis factor-${\alpha}$, interleukin-$1{\beta}$ and reactive oxygen species (ROS). Because of its composite profile, oral therapeutic index and a prophylactic, Green-Tea is considered the better therapeutic candidate for the treatment of Alzheimer's disease.

  • PDF