• 제목/요약/키워드: Theory of Recognition

검색결과 643건 처리시간 0.028초

Combining Different Distance Measurements Methods with Dempster-Shafer-Theory for Recognition of Urdu Character Script

  • Khan, Yunus;Nagar, Chetan;Kaushal, Devendra S.
    • International Journal of Ocean System Engineering
    • /
    • 제2권1호
    • /
    • pp.16-23
    • /
    • 2012
  • In this paper we discussed a new methodology for Urdu Character Recognition system using Dempster-Shafer theory which can powerfully estimate the similarity ratings between a recognized character and sampling characters in the character database. Recognition of character is done by five probability calculation methods such as (similarity, hamming, linear correlation, cross-correlation, nearest neighbor) with Dempster-Shafer theory of belief functions. The main objective of this paper is to Recognition of Urdu letters and numerals through five similarity and dissimilarity algorithms to find the similarity between the given image and the standard template in the character recognition system. In this paper we develop a method to combine the results of the different distance measurement methods using the Dempster-Shafer theory. This idea enables us to obtain a single precision result. It was observed that the combination of these results ultimately enhanced the success rate.

Conflict Resolution: Analysis of the Existing Theories and Resolution Strategies in Relation to Face Recognition

  • A. A. Alabi;B. S. Afolabi;B. I. Akhigbe;A. A. Ayoade
    • International Journal of Computer Science & Network Security
    • /
    • 제23권9호
    • /
    • pp.166-176
    • /
    • 2023
  • A scenario known as conflict in face recognition may arise as a result of some disparity-related issues (such as expression, distortion, occlusion and others) leading to a compromise of someone's identity or contradiction of the intended message. However, addressing this requires the determination and application of appropriate procedures among the various conflict theories both in terms of concepts as well as resolution strategies. Theories such as Marxist, Game theory (Prisoner's dilemma, Penny matching, Chicken problem), Lanchester theory and Information theory were analyzed in relation to facial images conflict and these were made possible by trying to provide answers to selected questions as far as resolving facial conflict is concerned. It has been observed that the scenarios presented in the Marxist theory agree with the form of resolution expected in the analysis of conflict and its related issues as they relate to face recognition. The study observed that the issue of conflict in facial images can better be analyzed using the concept introduced by the Marxist theory in relation to the Information theory. This is as a result of its resolution strategy which tends to seek a form of balance as result as opposed to the win or lose case scenarios applied in other concepts. This was also consolidated by making reference to the main mechanisms and result scenario applicable in Information theory.

The Pattern Recognition System Using the Fractal Dimension of Chaos Theory

  • Shon, Young-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권2호
    • /
    • pp.121-125
    • /
    • 2015
  • In this paper, we propose a method that extracts features from character patterns using the fractal dimension of chaos theory. The input character pattern image is converted into time-series data. Then, using the modified Henon system suggested in this paper, it determines the last features of the character pattern image after calculating the box-counting dimension, natural measure, information bit, and information (fractal) dimension. Finally, character pattern recognition is performed by statistically finding each information bit that shows the minimum difference compared with a normalized character pattern database.

A Study on Character Recognition using HMM and the Mason's Theorem

  • Lee Sang-kyu;Hur Jung-youn
    • Proceedings of the IEEK Conference
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.259-262
    • /
    • 2004
  • In most of the character recognition systems, the method of template matching or statistical method using hidden Markov model is used to extract and recognize feature shapes. In this paper, we used modified chain-code which has 8-directions but 4-codes, and made the chain-code of hand-written character, after that, converted it into transition chain-code by applying to HMM(Hidden Markov Model). The transition chain code by HMM is analyzed as signal flow graph by Mason's theory which is generally used to calculate forward gain at automatic control system. If the specific forward gain and feedback gain is properly set, the forward gain of transition chain-code using Mason's theory can be distinguished depending on each object for recognition. This data of the gain is reorganized as tree structure, hence making it possible to distinguish different hand-written characters. With this method, $91\%$ recognition rate was acquired.

  • PDF

Restructuring Axel Honnet's Conception of Morality based on the Theory of Recognition from a Deontological Perspective (악셀 호네트의 인정이론적 도덕 구상의 의무론적 재구조화를 위한 시도)

  • Kang, Byoungho
    • Journal of Korean Philosophical Society
    • /
    • 제116호
    • /
    • pp.1-28
    • /
    • 2017
  • Axel Honneth's recognition-theoretical conception of morality is most often characterized as a teleological or ethical foundation of morality and understood in simple consequentialist sense. Besides teleological or consequentialist components, however, there are obviously Kantian deontological ones too in his moral conception of Recognition. This study is intended to provide a consistent and coherent interpreta-tion of it, which is largely adopting main features of the moral philosophy of Kant. This interpretation makes a deontological restructuring of Honneth's moral conception of recognition necessary. It is in this way that the moral aspect of recognition will be able to satisfy the intention and whole project of Honneth's theory of recognition.

The Relationship Between Love and Justice: Hegel's Theory of Recognition (사랑과 정의의 관계: 헤겔의 인정이론)

  • Seo, Yunho
    • Cross-Cultural Studies
    • /
    • 제52권
    • /
    • pp.111-132
    • /
    • 2018
  • The way of approaching 'the relationship between love and justice' varies from person to person. We can argue for superiority of love or for superiority of justice by understanding the relationship between the two as conflicting. We can also argue that we need each other by understanding each other as a complementary relationship rather than an oppositional relationship. Hegel, however, sees love and justice as independent constitutive principles valid in different areas and does not regard the two as opposing nor complementary. This can only be understood when the structure of Hegel's theory of recognition is properly assumed. The relationship between love and justice will be considered mainly in Hegel's theory of recognition. Key philosophical points of Hegel's theory of recognition and consequences drawn on the relationship between love and justice on the basis of the theory will be examined. This can be summarized in the form of a thesis, roughly as follows. - Hegel presents love, justice and solidarity, that are various forms of recognition, to a family, a civil society and a state, that are three forms of social relations, as their constitutive principles. He does not grasp the relationship between love and justice as oppositional nor as complementary, that is different from many people's general perspective on the relationship of the two. - In Hegel's theory of recognition, love and justice differ in the areas in which they are valid. Love is a valid principle in the intimacy, and justice is a valid principle in non-intimacy. So, if justice and rights are asserted in intimacy, the area of intimacy is destroyed. Conversely, if love is asserted in non-intimacy, it cannot exercise real influence. - In the political community such as a state, where intimacy and non-intimacy overlap each other, the principle of solidarity is needed as a new constitutive principle, since a state does not stand on the principle of love as in a family nor on the principle of justice as in a civil society.

Emergent damage pattern recognition using immune network theory

  • Chen, Bo;Zang, Chuanzhi
    • Smart Structures and Systems
    • /
    • 제8권1호
    • /
    • pp.69-92
    • /
    • 2011
  • This paper presents an emergent pattern recognition approach based on the immune network theory and hierarchical clustering algorithms. The immune network allows its components to change and learn patterns by changing the strength of connections between individual components. The presented immune-network-based approach achieves emergent pattern recognition by dynamically generating an internal image for the input data patterns. The members (feature vectors for each data pattern) of the internal image are produced by an immune network model to form a network of antibody memory cells. To classify antibody memory cells to different data patterns, hierarchical clustering algorithms are used to create an antibody memory cell clustering. In addition, evaluation graphs and L method are used to determine the best number of clusters for the antibody memory cell clustering. The presented immune-network-based emergent pattern recognition (INEPR) algorithm can automatically generate an internal image mapping to the input data patterns without the need of specifying the number of patterns in advance. The INEPR algorithm has been tested using a benchmark civil structure. The test results show that the INEPR algorithm is able to recognize new structural damage patterns.

Robust Speech Recognition Using Missing Data Theory (손실 데이터 이론을 이용한 강인한 음성 인식)

  • 김락용;조훈영;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • 제20권3호
    • /
    • pp.56-62
    • /
    • 2001
  • In this paper, we adopt a missing data theory to speech recognition. It can be used in order to maintain high performance of speech recognizer when the missing data occurs. In general, hidden Markov model (HMM) is used as a stochastic classifier for speech recognition task. Acoustic events are represented by continuous probability density function in continuous density HMM(CDHMM). The missing data theory has an advantage that can be easily applicable to this CDHMM. A marginalization method is used for processing missing data because it has small complexity and is easy to apply to automatic speech recognition (ASR). Also, a spectral subtraction is used for detecting missing data. If the difference between the energy of speech and that of background noise is below given threshold value, we determine that missing has occurred. We propose a new method that examines the reliability of detected missing data using voicing probability. The voicing probability is used to find voiced frames. It is used to process the missing data in voiced region that has more redundant information than consonants. The experimental results showed that our method improves performance than baseline system that uses spectral subtraction method only. In 452 words isolated word recognition experiment, the proposed method using the voicing probability reduced the average word error rate by 12% in a typical noise situation.

  • PDF

A Novel Recognition Algorithm Based on Holder Coefficient Theory and Interval Gray Relation Classifier

  • Li, Jingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4573-4584
    • /
    • 2015
  • The traditional feature extraction algorithms for recognition of communication signals can hardly realize the balance between computational complexity and signals' interclass gathered degrees. They can hardly achieve high recognition rate at low SNR conditions. To solve this problem, a novel feature extraction algorithm based on Holder coefficient was proposed, which has the advantages of low computational complexity and good interclass gathered degree even at low SNR conditions. In this research, the selection methods of parameters and distribution properties of the extracted features regarding Holder coefficient theory were firstly explored, and then interval gray relation algorithm with improved adaptive weight was adopted to verify the effectiveness of the extracted features. Compared with traditional algorithms, the proposed algorithm can more accurately recognize signals at low SNR conditions. Simulation results show that Holder coefficient based features are stable and have good interclass gathered degree, and interval gray relation classifier with adaptive weight can achieve the recognition rate up to 87% even at the SNR of -5dB.

LSG;(Local Surface Group); A Generalized Local Feature Structure for Model-Based 3D Object Recognition (LSG:모델 기반 3차원 물체 인식을 위한 정형화된 국부적인 특징 구조)

  • Lee, Jun-Ho
    • The KIPS Transactions:PartB
    • /
    • 제8B권5호
    • /
    • pp.573-578
    • /
    • 2001
  • This research proposes a generalized local feature structure named "LSG(Local Surface Group) for model-based 3D object recognition". An LSG consists of a surface and its immediately adjacent surface that are simultaneously visible for a given viewpoint. That is, LSG is not a simple feature but a viewpoint-dependent feature structure that contains several attributes such as surface type. color, area, radius, and simultaneously adjacent surface. In addition, we have developed a new method based on Bayesian theory that computes a measure of how distinct an LSG is compared to other LSGs for the purpose of object recognition. We have experimented the proposed methods on an object databaed composed of twenty 3d object. The experimental results show that LSG and the Bayesian computing method can be successfully employed to achieve rapid 3D object recognition.

  • PDF