• Title/Summary/Keyword: Theoretical Maximum Density

Search Result 102, Processing Time 0.023 seconds

Behavior of Two Dimensional Density Flow into a Reservoir with Sloping Bottom (경사정지수역으로 유입되는 2차원 밀도류의 거동)

  • 윤태훈;전시영
    • Water for future
    • /
    • v.20 no.3
    • /
    • pp.237-245
    • /
    • 1987
  • The behavior of negative buoyant flow into a reservoir with sloping bottom is analysed by numerical solution technique of the governing equations composed of continuty, momentum and constituent transport equation. The stable plunge point and maximum travel distance are found to be dependent on the bottom slope of reservoir as well as inflow densimetric Froude number, $Fr_e$. They are also related closely to a vortex formed just downstream from the plunge point and above the underflow. The plunge depth was shown to be a function of th bottom slope and $Fr_e$. The plunge depths obtained in this numerical study agree relatively well with published data and theoretical studies, and its predictive equation is derived.

  • PDF

Rolling Fatigue Life of Silicon Nitride Ceramic Balls (질화규소 세라믹볼의 구름피로수명)

  • 최인혁;박창남;최헌진;이준근;신동우
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.150-155
    • /
    • 1999
  • The rolling fatigue lives (RFL) of five kinds of silicon nitride balls were investigated. Four kinds of Si$_3$N$_4$balls were fabricated using different raw materials, sintering aids and sintering conditions. Commercially available Si$_3$N$_4$ball was also studied for comparison. All the balls were finished up to the dimensional accuracy of Grade 10 defined in KS B 2001 (Steel Balls fer Ball Bearings) with a size of 9.525 mm. RFL tests were then conducted under the initial theoretical maximum contact stress 6.38 GPa and the spindle speed 10,000 rpm. Gear oil was provided by oiled race as lubricant. The results of RFL test indicated the prerequisitic conditions for the long rolling life of Si$_3$N$_4$ball : (1) the high density, (2) microstructures consisted of small uniformly distributed grains, (3) little glassy phase in grainboundary, and (4) little crystalline phase and secondary phase that induces residual thermal stress due to the differences of thermal expansion coefficient with Si$_3$N$_4$phase.

Effect of Bi2O3/Li2CO3 on Low Temperature Sintering and Dielectrics of BaTiO3 Ceramics (BaTiO3 저온 소결 및 유전상에 미치는 Bi2O3/Li2CO3의 영향)

  • 윤기현;신현민;강동헌
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.843-849
    • /
    • 1989
  • Effect of Bi2O3/Li2CO3 on low temperature sinteirng and dielectric property of BaTiO3 ceramics has been investigated. For the specimen sintered at 110$0^{\circ}C$, it was densified to 96% of BaTiO3 theoretical density by the addition of 1.0-1.25w/o Bi2O3/Li2CO3. Maximum dielectric constant increased and Curie temperature lowered with the increase of Bi2O3/Li2CO3 content, which probably can be explained by thne substitution of Bi3+, Li1+ on BaTiO3 lattice. The volatilization of Li1+, resulting from the increase of soaking time at 110$0^{\circ}C$ leads to the increase of Curie temperature and tetragonality of the specimen.

  • PDF

A Theoretical Analysis of Voltage and Current in Low Pressure Mercury-Argon Mixture Gas Discharge with Frequency Variation (저압 수은-아르곤 혼합기체 방전의 주파수에 따른 전압, 전류 변화의 이론적 해석)

  • Yi, Chin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.23-27
    • /
    • 2005
  • A fluorescent lamp which uses low pressure mercury-argon gas discharge shows the maximum current and minimum lamp voltage near 1(kHz) source frequency at constant power. For explain these phenomena theoretically, in this paper a atomic level discharge model was made and particle density and electron temperature variation were calculated using numerical method.

Theoretical Study On Optimum Fin Design From Tube Bundles To Boiling Liquids (관군의 비등열전달에서 휜의 최적화에 관한 이론적 연구)

  • Jho Shi-Gie;Choi Kyung-Bin;Kang Yung-Kyu
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.3
    • /
    • pp.264-272
    • /
    • 1986
  • The performance of vertical and horizontal tubes with multiple fins of rectangular and triangular cross section was investigated theoretically for boiling heat transfer. A simple method for numerical program assuming one-dimensional heat flow was used to predict the performance of these finned tubes and their bundles. The object of the new study was to develop optimum fin design, especially in tube bundles, considering from a viewpoint to minimize the space in which the maximum heat flux density was expected.

  • PDF

Development of High Capacity Lithium Ion Battery Anode Material by Controlling Si Particle Size with Dry Milling Process (건식 분쇄 공정으로 Si 입도 제어를 통한 고용량 리튬이온전지 음극 소재의 개발)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2018
  • Currently graphite is used as an anode active material for lithium ion battery. However, since the maximum theoretical capacity of graphite is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of next generation high capacity and high energy density lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is about 10 times higher than the maximum theoretical capacity of graphite. However, since the volume expansion rate is almost 400%, the irreversible capacity increases as the cycle progresses and the discharge capacity relative to the charge is remarkably reduced. In order to solve these problems, it is possible to control the particle size of the Si anode active material to reduce the mechanical stress and the volume change of the reaction phase, thereby improving the cycle characteristics. Therefore, in order to minimize the decrease of the charge / discharge capacity according to the volume expansion rate of the Si particles, the improvement of the cycle characteristics was carried out by pulverizing Si by a dry method with excellent processing time and cost. In this paper, Si is controlled to nano size using vibrating mill and the physicochemical and electrochemical characteristics of the material are measured according to experimental variables.

A Study on Fabrication and Sintering Behavior of Al-Pb-X(Sn,Sn-Si) clad strips (급냉응고한 Al-Pb-X(Sn,Sn-Si)계 합금분말(合金粉末)의 압연판재(壓延板材)의 제조(製造)와 소결(燒結)특성)

  • Choi, Jong-Gu;Moon, Jong-Tai;Lee, Yong-Ho;Cho, Sung-Suk
    • Journal of Korea Foundry Society
    • /
    • v.12 no.3
    • /
    • pp.210-219
    • /
    • 1992
  • The measurement of the apparent and tap density for Al-Pb-X(Sn,Sn-Si) powders produced by centrifugal atomizer showed that the larger theoretically calculated densities the larger those densities. And tap densities were not over 50% of the theoretical densities. The nip angle of Al-5wt%Pb alloy powders produced with 38000 r.p.m. of disk rotation was $3^{\circ}$ degree larger than that of Al-8.5wt%Pb-3wt%Sn(-4wt%Si, 8wt%Si) with 50000 r.p.m. The effects of roll gap and rolling speed on thickness and density of the single strips by rolling were that rolling speed increasing the thickness and density of strip decreased and roll gap increasing, the thickness of strip increased but the density decresed. The compactibility of Al-Pb-X with Al by rerolling showed that the coarse powder-strips were better than fine powder-strips. From the SEM study with EDX analysis on the sintered strips, it was found that Pb and Sn were segregated with maximum size $5{\mu}m$, and Si existed surrounding the segregation zone. After sintering the clad strips at $500^{\circ}C$, the pores, which were spherical with $5{\mu}m$ of mean diameter, partly remained around the particles of alloy powders area, while completely disappeared at clad interface. The hardness of strips of alloy powders decreased linearly with increasing sintering temperature.

  • PDF

Effects of particle size on processing variables and green microstructure in gelcast alumina green bodies (겔-케스팅한 알루미나 성형체에서 출발입도가 공정변수 및 성형 미세구조에 미치는 영향)

  • Ha, Chang-Gi;Kim, Jae-Won;Jo, Chang-Yong;Baek, Un-Gyu;Jeong, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.869-878
    • /
    • 2001
  • Alumina $(Al_2O_3)$ green bodies were fabricated by gel-casting using three kinds of alumina with different particle size (mean particle size: 4.6 $\mu\textrm{m}$, 0.32 $\mu\textrm{m}$, 10nm). The effects of particle size on gel-casting process and green microstructure were investigated. The optimum dispersion conditions using ammonium salt (D-3019) as dispersant were 0.2 wt% (4.63 $\mu\textrm{m}$), 0.5 wt% (0.32 $\mu\textrm{m}$), and 5.0 wt% (10 nm), in high solid loading. The optimum solid loading of each starting material for gel-casting was obtained as 59 vol% (4.63 $\mu\textrm{m}$), 57 vol% (0.32 $\mu\textrm{m}$), 15 vol% (10 nm), depending on particle size, indicating that nano-size particle (10 nm) represent lower solid loading as high specific surface area than those of other two starting materials. The drying at ambient conditions (humidity; $\thickapprox$90%) was performed more than 48hrs to enable ejection of the part from the mold and then at $120^{\circ}C$ for 2hrs in an air oven, showing no crack and flaw in the dried green bodies. The pore size and distribution of the gelcast green bodies showed the significant decrease with decreasing particle size. Green microstructure was dependent on the pore size and distribution due to the particle size, and on the deairing step. The green density maximum obtained was 58.9% (4.63 $\mu\textrm{m}$), 60% (0.32 $\mu\textrm{m}$), 47% (10 nm) theoretical density (TD), and the deairing step applied before gel-casting did not affect green density.

  • PDF

Mass Production of Mammalian Cells under Chemostat Cultivation (동물세포의 연속 대량생산에 관한 연구)

  • 이현용;강재구;박형환
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.3
    • /
    • pp.173-177
    • /
    • 1989
  • Cell density was gradually decreased as the dilution rate was increased under chemostat cultivation of HeLa cells. Maxium cell density was maintained at the dilution rate of 0.020 (1/h) which was far less than the wash-out rate of 0.050 (1/h), Maxium cell productivity of 2 (mL of cells/L/h)was obtained at the dilution rate of 0.030 (1/h) by showing the culture also required maintenance period at low dilution rates, whose result meant the deviation of continuous culture theroy. Methods of indirectly measuring cell density have been introduced to represent mammalian cell growth, which are packed cell volume and oxygen uptake rate, and these values showed good linear relationship with actual cell density by having correlation factor of 0.90. Theoretical maximum oxygen yield, $Y_{O2}^{max}$ and maintenance oxygen consumption rate, m$_{O2}$, were estimated as 4.1$\times$10$^5$ (cells/mmole $O_2$) and 10.71$\times$10$^{-9}$ (mmole $O_2$/cells/h) by employing oxygen yield model.

  • PDF

Spark Plasma Sintering and Ultra-Precision Machining Characteristics of SiC

  • Son, Hyeon-Taek;Kim, Dae-Guen;Park, Soon-Sub;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.559-569
    • /
    • 2010
  • The liquid-phase sintering method was used to prepare a glass lens forming core composed of SiC-$Al_2O_3-Y_2O_3$. Spark plasma sintering was used to obtain dense sintered bodies. The sintering characteristics of different SiC sources and compositions of additives were studied. Results revealed that, owing to its initial larger surface area, $\alpha$-SiC offers sinterability that is superior to that of $\beta$-SiC. A maximum density of $3.32\;g/cm^3$ (theoretical density [TD] of 99.7%) was obtained in $\alpha$-SiC-10 wt% ($6Al_2O_3-4Y_2O_3$) sintered at $1850^{\circ}C$ without high-energy ball milling. The maximum hardness and compression stress of the sintered body reached 2870 Hv and 1110 MPa, respectively. The optimum ultra-precision machining parameters were a grinding speed of 1243 m/min, work spindle rotation rate of 100 rpm, feed rate of 0.5 mm/min, and depth of cut of $0.2\;{\mu}m$. The surface roughnesses of the thus prepared final products were Ra = 4.3 nm and Rt = 55.3 nm for the aspheric lens forming core and Ra = 4.4 nm and Rt = 41.9 for the spherical lens forming core. These values were found to be sufficiently low, and the cores showed good compatibility between SiC and the diamond-like carbon (DLC) coating material. Thus, these glass lens forming cores have great potential for application in the lens industry.