• Title/Summary/Keyword: Theophyline pharmacokinetics

Search Result 3, Processing Time 0.013 seconds

Effect of Hepatic Cirrhosis on the Pharmacokinetics of Theophylline in Rats

  • Nam, Bang-Hyun;Sohn, Dong-Hwan;Ko, Geonil;Kim, Jae-Baek
    • Archives of Pharmacal Research
    • /
    • v.20 no.4
    • /
    • pp.318-323
    • /
    • 1997
  • The experimental hepatic cirrhosis was induced either by bile duct ligation (BDL) or by pretreatment with dimethyinitrosamine (DMNA). The pharmacokinetics of theophylline were studied after a single intravenous or a single oral administration. Using the ultrafiltration method, protein-drug binding experiments were also carried out. The bilirubin level was several-fold increased by BDL, but not by DMNA treatment. The albumin content was decreased in both cirrhotic groups. The total clearance (Clt, ml/kg/hr) of theophylline in both hepatic cirrhosis groups significantly decreased and the terminal half-life $(t_{1/2})$ in the cirrhotic rats was increased about two-fold after intravenous and oral administration. The volume of distribution at steady state (Vdss, ml/kg) was increased slightly in the cirrhotic groups. Protein binding in BDL $(8.67{\pm}4.85%)$ decreased about four-folds, but in DMNA $(73.00{\pm}9.85%)$ similar result war observed as compared with the control. Increased free fraction of theophylline did not increase the volume of distribution in BDL. Therefore decreased total body clearance of theophylline was mainly due to decreased intrinsic clearance of theophylline in the liver. The absolute bioavailability of theophylline in these experiments was between 63.8 and 72.8%(66.1% in BDL, 63.8% in Sham operated and Control, 72.8% in DMNA). These results suggest that in the experimental hepatic cirrhosis model, administration route does not affect the disposition of theophylline.

  • PDF

Biotransformation of Theophylline in Cirrhotic Rats Induced by Biliary Obstruction

  • Park, Eun-Jeon;Ko, Geon-Il;Kim, Jae-Baek;Sohn, Dong-Hwan
    • Archives of Pharmacal Research
    • /
    • v.22 no.1
    • /
    • pp.60-67
    • /
    • 1999
  • The object of this work was to study the pharmacokinetic differences and the cause of these differences in cirrhotic rats induced by biliary obstruction when aminophylline (8 mg/kg as theophylline, i.v.) was administered. The concentrations of theophylline and its major metabolite (1,3-dimethyluric acid) in plasma were determined by HPLC. In addition, formation of 1,3-dimethyluric acid from theophylline in microsomes and the changes in the activity of drug metabolizing enzymes, which are suggested to be involved in theophylline metabolism, were determined. In cirrhotic rats, the systemic clearance of theophylline was reduced to 30% of the control value while AUC (area under the palsma concentration-tie curve) and (t1/2)$\beta$ were increased 1.3 fold and3.5 fold, respectively. The formation of 1,3-dimethyluric acid was decreased to 30% of the control value in microsomes of cirrhotic rat liver. In cirrhotic rat liver, activities of aniline hydroxylase (CYP2E1 related), erythromycin-N-demethylase (CYP3A related), and methoxyresorufin-O-demethylase (CYP1A2 related), which were reported to be related with theophyline metabolism, were decreased to 67%, 53%, and 76% that of normal rat liver, respectively. From the results, it can be concluded that in cirrhotic rats induced by biliary obstruction, the total body clearance of theophylline is markedly reduced and it may be due to decreased activity of drug metabolizing enzymes in liver.

  • PDF

Nonlinear Renal Excretion of Theophyline and its Metabolites, 1-Methyluric Acid and 1,3-Dimethyluric Acid, in Rats

  • Kuhkang, Hyo-Jeong;Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.17 no.2
    • /
    • pp.124-130
    • /
    • 1994
  • Plasma phamacokinetics and renal excretion of theophylline (TP) and its metabolities were ivnestigated in rats. Plasma concentrations of TP declined in a monoexponential manner, while those of 1-methyluric (MU) and 1,3-dimethyluric(DMU) declined in a biexponential manner upon respective iv bolus injection of each compound at 6mg/kg dose. The total body clearances $(CL_r)$ of the metabolites were 4-6 fold larger than that of TP, while the distribution volumes of them at steady-state $(Vd_{ss})$ were 40-50% smaller than that of TP. The metabolites showed their plasma peaks in 30 min after iv injection of TP indicating than that to MU. Renal excretion of TP and its metabolites was studied in urine flow rate (UFR)-controlled rats. The renal clearance $(CL_r)$ of TP was inversely related to pasma TP concentrations, and much smaller than the glomerular filtration rate (GFR) suggesting tubular secretion and profound reabsorption in the renal tubule. The $(CL_r)$ of each metabolite also showed that inverse relationship, but far exceeded GFR suggesting that tubular secretion than GFR by ip injection of probenecid (142.7 mg/kg). It supports that the metabolies are secreted in the renal tubule, and suggests that they share a common transport system in their sectrtion processes with probenecid. On the other hand, the $(CL_r)$ of TP was not affected significantly by the probenecid treatment. Considering the inverse relationship of TP between the $(CL_r)$ and its ploasma concentrations,no effect of probenecid on $(CL_r)$ of TP is most likely due to negligible contribution of the secretion to the overall $(CL_r)$ of TP.

  • PDF