• Title/Summary/Keyword: Theodorsen equation

Search Result 12, Processing Time 0.015 seconds

A study on the convergence of Wegmann's method applying a low frequency pass filter (저주파필터를 적용한 Wegmann 방법의 수렴성에 관한 연구)

  • Song, Eun-Jee
    • The KIPS Transactions:PartA
    • /
    • v.11A no.2
    • /
    • pp.203-206
    • /
    • 2004
  • Wegmann's method has been known as the most efficient one for the Theodorsen equation that is needed to solve conformal mapping. It was researched in the earlier studies (1). However divergence was revealed in some difficult problems by numerical experiment using Wegmann's method. We analyzed the cause of divergence and proposed an improved method by applying a low frequency pass filter to Wegmann's method. Numerical experiments using the improved method showed convergence for all divergent problems using the Wegmann's method. In this paper, we prove theroretically the cause of convergence in the Numerical experiment using the improved method by applying a low frequency pass filter to Wegmann's method. We make use of Fourier transforms in this theoretical proof of convergence.

CFD based simulations of flutter characteristics of ideal thin plates with and without central slot

  • Zhu, Zhi-Wen;Chen, Zheng-Qing;Gu, Ming
    • Wind and Structures
    • /
    • v.12 no.1
    • /
    • pp.1-19
    • /
    • 2009
  • In this paper, the airflow around an ideal thin plate (hereafter referred to as ITP) with various ratios of central slot is simulated by using the finite-difference-method (FDM)-based Arbitrary-Lagrangian-Eulerian descriptions for the rigid oscillating body. The numerical procedure employs the second-order projection scheme to decouple the governing equations, and the multigrid algorithm with three levels to improve the computational efficiency in evaluating of the pressure equation. The present CFD method is validated through comparing the computed flutter derivatives of the ITP without slot to Theodorsen analytical solutions. Then, the unsteady aerodynamics of the ITP with and without central slot is investigated. It is found that even a smaller ratio of central slot of the ITP has notable effects on pressure distributions of the downstream section, and the pressure distributions on the downstream section will further be significantly affected by the slot ratio and the reduced wind speeds. Continuous increase of $A_2^*$ with the increase of central slot may be the key feature of the slotted ITP. Finally, flutter analyses based on the flutter derivatives of the slotted ITP are performed, and moreover, flutter instabilities of a scaled sectional model of a twin-deck bridge with various ratios of deck slot are investigated. The results confirm that the central slot is effective to improve bridge flutter stabilities, and that the flutter critical wind speeds increase with the increase of slot ratio.