• 제목/요약/키워드: Theil-Sen estimator

검색결과 2건 처리시간 0.02초

Trend analysis of aridity index for southeast of Korea

  • Ghafouri-Azar, Mona;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.193-193
    • /
    • 2017
  • Trend analysis can enhance our knowledge of the dominant processes in the area and contribute to the analysis of future climate projections. The results of previous studies in South Korea showed that southeast regions of Korea had the highest value of evapotranspiration. Thereby, it is of interest to determine the trend analysis in hydrological variables in this area. In this study, the recent 35 year trends of precipitation, reference evapotranspiration, and aridity index in monthly and annual time scale will be analyzed over three stations (Pohang, Daegu, and Pusan) of southeast Korea. After removing the significant Lag-1 serial correlation effect by pre-whitening, non-parametric statistical Mann-Kendall test was used to detect the trends. Also, the slope of trend of the Mann-Kendall test was determined by using Theil-Sen's estimator. The results of the trend analysis of reference evapotranspiration on the annual scale showed the increasing trend for the three mentioned stations, with significant increasing trend for Pusan station. The results obtained from this research can guide development if water management practices and cropping systems in the area that rely on this weather stations. The approaches use and the models fitted in this study can serve as a demonstration of how a time series trend can be analyzed.

  • PDF

가우시안 프로세스 회귀분석을 이용한 지하수 수질자료의 해석 (Applications of Gaussian Process Regression to Groundwater Quality Data)

  • 구민호;박은규;정진아;이헌민;김효건;권미진;김용성;남성우;고준영;최정훈;김덕근;조시범
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.67-79
    • /
    • 2016
  • Gaussian process regression (GPR) is proposed as a tool of long-term groundwater quality predictions. The major advantage of GPR is that both prediction and the prediction related uncertainty are provided simultaneously. To demonstrate the applicability of the proposed tool, GPR and a conventional non-parametric trend analysis tool are comparatively applied to synthetic examples. From the application, it has been found that GPR shows better performance compared to the conventional method, especially when the groundwater quality data shows typical non-linear trend. The GPR model is further employed to the long-term groundwater quality predictions based on the data from two domestically operated groundwater monitoring stations. From the applications, it has been shown that the model can make reasonable predictions for the majority of the linear trend cases with a few exceptions of severely non-Gaussian data. Furthermore, for the data shows non-linear trend, GPR with mean of second order equation is successfully applied.