• Title/Summary/Keyword: The surface quality

Search Result 5,158, Processing Time 0.035 seconds

A Study on Characteristics of Tool Wear and Surface Roughness in Face Milling of Automobile Parts (승용차 부품의 정면밀링가공시 공구마모 및 표면거칠기 특성에 관한 연구)

  • 김성일;오성훈;문상돈;김태영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.223-230
    • /
    • 1996
  • The quality and productivity in machining automobile parts are influenced by various factors such as cutting conditions, vibration, and used tool. To improve the quality and productivity of the automobile parts(torsion beam), lots of research on the evaluation of tool life and control of surface roughness has been required. Therefore, the width of flank wear, cutting force, and surface roughness are monitored to analyse the characteristics of tool wear and surface roughness at different tools. This experimental investigation is mainly focused on the characteristics of the tool wear, tool life and surface roughness in multi-insert milling of automobile parts(torsion beam) by using uncoated tungsten carbide tool(WC), TiN coated tool, and cermet tool.

  • PDF

An effective quality improvement scheme of magnified image using the surface characteristics in image (영상의 곡면 특성을 활용한 효과적인 확대영상의 화질 향상 기법)

  • Jung, Soo-Mok;On, Byung-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.45-54
    • /
    • 2014
  • In this paper, we proposed an effective quality improvement scheme of magnified image using the surface characteristics in image. If the surface in image is estimated as simple convex surface or simple concave surface, the interpolated value can be calculated to have the surface characteristics by using the other method in the proposed scheme. The calculated value becomes the interpolated pixel value inmagnified image. So, themagnified image reflects the surface characteristics of the real image. If the surface is not estimated as simple convex surface or simple concave surface, the interpolated value is calculated more accurately than bilinear interpolation by using the method of the proposed scheme. The PSNR values of the magnified images using the proposed schemes are greater than those of the magnified images using the previous interpolation schemes.

The Development of Surface Inspection System Using the Real-time Image Processing (실시간 영상처리를 이용한 표면흠검사기 개발)

  • 이종학;박창현;정진양
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.171-171
    • /
    • 2000
  • We have developed m innovative surface inspection system for automated quality control for steel products in POSCO. We had ever installed the various kinds of surface inspection systems, such as a linear CCD and a laser typed surface inspection systems at cold rolled strips production lines. But, these systems cannot fulfill the sufficient detection and classification rate, and real time processing performance. In order to increase detection and classification rate, we have used the Dark, Bright and Transition Field illumination and area type CCD camera, and fur the real time image processing, parallel computing has been used. In this paper, we introduced the automatic surface inspection system and real time image processing technique using the Object Detection, Defect Detection, Classification algorithms and its performance obtained at the production line.

  • PDF

Development of a 3D Shape Reconstruction System for Defects on a Hot Steel Surface (고온 금속 표면 결함에 대한 3차원 형상 추출 시스템 개발)

  • Jang, Yu Jin;Lee, Joo Seob
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.459-464
    • /
    • 2015
  • An on-line quality control of hot steel products is one of the important issues in the steel industry because of cost minimization. In recent years, relative depth information of surface defects is increasingly required for strict quality control. In this paper, a 3D shape reconstruction scheme for defects on a hot steel surface based on a multi-spectral photometric stereo method is proposed. After simultaneously illuminating a hot steel surface by using vertical/horizontal linearly polarized lights of green and blue light sources, the corresponding 4 images are obtained. The photometric stereo method is then applied with the aid of a GPU (Graphic Processing Unit) to reconstruct the shape of the target surface based on these images. The proposed scheme was validated through experiments.

Status and its Improvement of Comprehensive Water Quality Evaluation (물환경 종합평가의 현황과 선진화 방안)

  • Choi, Ji Yong;Lee, Jee Hyun;Lee, Jae Kwan;Kim, Chang Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.748-756
    • /
    • 2006
  • Accurate and timely information on status and trends in the environment is necessary to shape sound water quality management policy and to implement water quality improvement programs efficiently. One of the most effective ways to communicate information on water quality trends to policy-makers, scientists, and the general public is with comprehensive water quality indices. The derivation and structure of a water quality index (WQI) for the classification of surface water quality is discussed. The WQI generally developed through the selection, transformation and weighting of determinants with rating curves based on legal standards and quality directives or guidelines. The representative pollutants should be included in the index, and the relationship between the quantity of these pollutants in the water and the resulting quality of the water should be based on scientific results. The WQI be simply and meaningfully formulated that nonscientifically trained users can easily become familiar with the framework of the system and use the output data to evaluate their own pollution problems.

Simulations of Summertime Surface Ozone Over the Korean Peninsula Under IPCC SRES A2 and B1 Scenarios (IPCC SRES A2와 B1 시나리오에 따른 한반도지역의 여름철 지표 오존의 수치모의)

  • Hong, Sung-Chul;Choi, Jin-Young;Song, Chang-Keun;Hong, You-Deog;Lee, Suk-Jo;Lee, Jae-Bum
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.251-263
    • /
    • 2013
  • The surface ozone concentrations changes were investigated in response to climate change over the Korean peninsula for summertime using the global-regional one way coupled Integrated Climate and Air quality Modeling System (ICAMS). The future simulations were conducted under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 and B1 scenarios. The modeling system was applied for four 10-year simulations: 1996~2005 as a present-day case, 2016~2025, 2046~2055, and 2091~2100 as future cases. The results in this study showed that the mean surface ozone concentrations increased up to 0.5~3.3 ppb under the A2, but decreased by 0.1~10.9 ppb under the B1 for the future, respectively. However, its increases were lower than an increase of the average daily maximum 8-hour (DM8H) surface ozone concentrations which was projected to increase by 2.8~6.5 ppb under the A2. The DM8H surface ozone concentrations seem to be therefore far more affected by the climate and emissions changes than mean values. The probability of exceeding 60 ppb was projected to increase by 6~19% under the A2. In the case of B1, its changes were presented with an increase of 2.9% in the 2020s but no occurrence in the 2100s due to the effect of the reduced emissions. Future projection on surface ozone concentrations was generally shown to have almost the similar trend as the emissions of $NO_x$ and NMVOC.

Modification of the Supporting Structure of a Wafer Polishing Machine for the Improved Stability (안정성 향상을 위한 Wafer Polishing Machine의 지지구조 개선)

  • Ro, Seung-Hoon;Kim, Young-Jo;Kim, Dong-Wook;Yi, Il-Hwan;Park, Keun-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.144-151
    • /
    • 2012
  • Polishing is not only one of the most frequently adopted processes in modern industries, but also the most critical one to the surface quality of the products such as semi conductor wafers and LED sapphire wafers. With the required specifications for the wafer surface quality getting more and more strengthened, the manufacturers are spending huge amount of cost to renew the machine to meet the enhanced surface specifications. Surface qualities of the wafers are mostly damaged by the structural vibrations of the polishing machines. In this paper, the dynamic characteristics of a wafer polishing machine have been analyzed through the frequency response test and the computer simulation. And the supporting structure of a polishing machine has been investigated to minimize the vibration transmissions, to improve the stability of the machine and further to reduce the defects of the polished products. The result of the study shows that simple design modifications of the supporting structure without altering the main structure of the machine can substantially suppress the vibrations of the machine with negligible expenses.

Development of Surface Acoustic Wave Sensor for Viscosity Measurement of Low Viscose Liquid Using Love Wave (Love파를 이용한 저점성 유체 점도 측정용 표면 탄성파 센서 개발)

  • Lee, Sang-Dae;Kim, Ki-Bok;Lee, Dae-Su
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.282-287
    • /
    • 2008
  • Love wave is one of the shear horizontal waves and it can propagate between two layers in liquid without energy loss. The SAW (surface acoustic wave) sensor using Love wave is very useful for real time measurement of the viscosity of liquid with high sensitivity. In this study, the 77 MHz and 155 MHz Love wave SAW sensors were fabricated and use to measure the viscosity of low viscous liquid. To generate the surface acoustic wave, the inter-digital transducers were fabricated on the quartz crystal wafer. In order to obtain the optimal thickness of the coating film (novolac photoresist) generating the Love wave on the surface of SAW device, theoretical calculation was performed. The performances of fabricated Love wave SAW sensors were tested. As test liquid, pure water and glycerol solutions having different concentrations were used. Since the determination coefficients of the regression equations for measuring the viscosity of liquid are greater than 0.98, the developed Love wave SAW sensors in this study will be very useful for precise measurement of viscosity of liquid.

Effects of Surface Roughness and Thermal Treatment of Buffer Layer on the Quality of GaN Epitaxial Layers (Buffer layer의 표면 거칠기와 열처리조건이 GaN 에픽층의 품질에 미치는 영향)

  • 유충현;심형관;강문성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.564-569
    • /
    • 2002
  • Heteroepitaxial GaN films were grown on sapphire substrates in order to study the effects of the buffer layer's surface roughness and thermal treatment on the epitaxial layer's quality. For this, GaN buffer layers were grown at $550^{\circ}C$ with various TMGa flow rates and durations of growth, and annealed at $1010^{\circ}C$ for 3 min after the temperature was raised by 23 ~ $92^{\circ}C/min$, and then GaN epitaxial layers were grown at $1000^{\circ}C$. It has been found that the buffer layer's surface roughness and the thermal treatment condition are critical factors on the quality of the epitaxial layer. When a buffer layer was frown with a TMGa flow rate of $24\mu mole/min$ for 30 sec, the surface roughness of the buffer lather was minimum and when the thermal ramping rate was $30.6^{\circ}C/min$ on this layer, the successively grown epitaxial layer's crystalline and optical qualities were optimized with a specular morphology. The minimum full width at half maximum(FWHM) of GaN(0002) x-ray diffraction peak and that of near-band-edge(NBE) peak from a room temperature photoluminescence (PL) were 5 arcmin and 9 nm, respectively.