• Title/Summary/Keyword: The society of intelligence-information complex

Search Result 146, Processing Time 0.028 seconds

Intelligent Intrusion Detection and Prevention System using Smart Multi-instance Multi-label Learning Protocol for Tactical Mobile Adhoc Networks

  • Roopa, M.;Raja, S. Selvakumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2895-2921
    • /
    • 2018
  • Security has become one of the major concerns in mobile adhoc networks (MANETs). Data and voice communication amongst roaming battlefield entities (such as platoon of soldiers, inter-battlefield tanks and military aircrafts) served by MANETs throw several challenges. It requires complex securing strategy to address threats such as unauthorized network access, man in the middle attacks, denial of service etc., to provide highly reliable communication amongst the nodes. Intrusion Detection and Prevention System (IDPS) undoubtedly is a crucial ingredient to address these threats. IDPS in MANET is managed by Command Control Communication and Intelligence (C3I) system. It consists of networked computers in the tactical battle area that facilitates comprehensive situation awareness by the commanders for timely and optimum decision-making. Key issue in such IDPS mechanism is lack of Smart Learning Engine. We propose a novel behavioral based "Smart Multi-Instance Multi-Label Intrusion Detection and Prevention System (MIML-IDPS)" that follows a distributed and centralized architecture to support a Robust C3I System. This protocol is deployed in a virtually clustered non-uniform network topology with dynamic election of several virtual head nodes acting as a client Intrusion Detection agent connected to a centralized server IDPS located at Command and Control Center. Distributed virtual client nodes serve as the intelligent decision processing unit and centralized IDPS server act as a Smart MIML decision making unit. Simulation and experimental analysis shows the proposed protocol exhibits computational intelligence with counter attacks, efficient memory utilization, classification accuracy and decision convergence in securing C3I System in a Tactical Battlefield environment.

Hybrid Learning Architectures for Advanced Data Mining:An Application to Binary Classification for Fraud Management (개선된 데이터마이닝을 위한 혼합 학습구조의 제시)

  • Kim, Steven H.;Shin, Sung-Woo
    • Journal of Information Technology Application
    • /
    • v.1
    • /
    • pp.173-211
    • /
    • 1999
  • The task of classification permeates all walks of life, from business and economics to science and public policy. In this context, nonlinear techniques from artificial intelligence have often proven to be more effective than the methods of classical statistics. The objective of knowledge discovery and data mining is to support decision making through the effective use of information. The automated approach to knowledge discovery is especially useful when dealing with large data sets or complex relationships. For many applications, automated software may find subtle patterns which escape the notice of manual analysis, or whose complexity exceeds the cognitive capabilities of humans. This paper explores the utility of a collaborative learning approach involving integrated models in the preprocessing and postprocessing stages. For instance, a genetic algorithm effects feature-weight optimization in a preprocessing module. Moreover, an inductive tree, artificial neural network (ANN), and k-nearest neighbor (kNN) techniques serve as postprocessing modules. More specifically, the postprocessors act as second0order classifiers which determine the best first-order classifier on a case-by-case basis. In addition to the second-order models, a voting scheme is investigated as a simple, but efficient, postprocessing model. The first-order models consist of statistical and machine learning models such as logistic regression (logit), multivariate discriminant analysis (MDA), ANN, and kNN. The genetic algorithm, inductive decision tree, and voting scheme act as kernel modules for collaborative learning. These ideas are explored against the background of a practical application relating to financial fraud management which exemplifies a binary classification problem.

  • PDF

A Design of Multi-Agent Framework to Develop Negotiation Systems

  • Park, Hyung-Rim;Kim, Hyun-Soo;Hong, Soon-Goo;Park, Young-Jae;Park, Yong-Sung;Kang, Moo-Hong
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.2
    • /
    • pp.155-169
    • /
    • 2003
  • A multi-agent technology has emerged as new paradigms that can flexibly and promptly cope with various environmental changes and complex problems. Accordingly, many studies have been carried out to establish multi-agent systems in an effort to solve dynamic problems in many fields. However, most previous research on the multi-agent frameworks aimed at, on the behalf of a user, exchanging and sharing information among agents, reusing agents, and suggesting job cooperation in order to integrate and assimilate heterogeneous agents. That is, their frameworks mainly focused on the basic functions of general multi-agents. Therefore, they are not suitable to the development of the proper system for a specific field such as a negotiation. The goal of this research is to design a multi-agent framework for the negotiation system that supports the evaluation of the negotiation messages, management of the negotiation messages, and message exchanges among the negotiation agents.

  • PDF

Opinion-Mining Methodology for Social Media Analytics

  • Kim, Yoosin;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.391-406
    • /
    • 2015
  • Social media have emerged as new communication channels between consumers and companies that generate a large volume of unstructured text data. This social media content, which contains consumers' opinions and interests, is recognized as valuable material from which businesses can mine useful information; consequently, many researchers have reported on opinion-mining frameworks, methods, techniques, and tools for business intelligence over various industries. These studies sometimes focused on how to use opinion mining in business fields or emphasized methods of analyzing content to achieve results that are more accurate. They also considered how to visualize the results to ensure easier understanding. However, we found that such approaches are often technically complex and insufficiently user-friendly to help with business decisions and planning. Therefore, in this study we attempt to formulate a more comprehensive and practical methodology to conduct social media opinion mining and apply our methodology to a case study of the oldest instant noodle product in Korea. We also present graphical tools and visualized outputs that include volume and sentiment graphs, time-series graphs, a topic word cloud, a heat map, and a valence tree map with a classification. Our resources are from public-domain social media content such as blogs, forum messages, and news articles that we analyze with natural language processing, statistics, and graphics packages in the freeware R project environment. We believe our methodology and visualization outputs can provide a practical and reliable guide for immediate use, not just in the food industry but other industries as well.

The Relative Importance and Priority of Game Contents Industry Policy (게임콘텐츠산업정책의 우선순위에 대한 연구)

  • Jeon, Gyongran
    • Journal of Korea Game Society
    • /
    • v.19 no.2
    • /
    • pp.55-66
    • /
    • 2019
  • This research studied how game contents related experts recognize the transition of contents industries in intellectual information era. This study also studied experts' priorities of evaluation elements in contents industry policies. For this, Analytic Hierarchy Process was utilized to analyze the relative importance and priorities of evaluation elements in contents industry policies. According to the analysis, the order of priorities was 'strengthening content technology', 'training content experts', 'improving the contents-related system' and 'strengthening content usage and consumer safety'. Also, in complex importance analysis, 'strengthening R&D system for content' was gauge as the most important element. In the analysis about each related group's thinking, industries and policy institutes considered 'strengthening content technology' important and academia evaluated 'training content experts' as the most important one.

Adaptive Face Mask Detection System based on Scene Complexity Analysis

  • Kang, Jaeyong;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.5
    • /
    • pp.1-8
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) has affected the world seriously. Every person is required for wearing a mask properly in a public area to prevent spreading the virus. However, many people are not wearing a mask properly. In this paper, we propose an efficient mask detection system. In our proposed system, we first detect the faces of input images using YOLOv5 and classify them as the one of three scene complexity classes (Simple, Moderate, and Complex) based on the number of detected faces. After that, the image is fed into the Faster-RCNN with the one of three ResNet (ResNet-18, 50, and 101) as backbone network depending on the scene complexity for detecting the face area and identifying whether the person is wearing the mask properly or not. We evaluated our proposed system using public mask detection datasets. The results show that our proposed system outperforms other models.

Relationships between Collective Intelligence Quality, Its Determinants, and Usefulness: A Comparative Study between Wiki Service and Q&A Service in Perspective of Korean Users (집단지성의 품질, 그 결정요인, 유용성의 관계: 수용자 관점에서 한국의 위키서비스와 Q&A 서비스의 비교)

  • Joo, Jaehun;Normatov, Ismatilla R.
    • Asia pacific journal of information systems
    • /
    • v.22 no.4
    • /
    • pp.75-99
    • /
    • 2012
  • Innovation can come from inside or outside organizations. Recently, organizations have begun turning to external knowledge more often, through various forms of collective intelligence (CI) as collaborative platform to solve complex problems. Several factors facilitate this CI utilization phenomenon. First, with the rapid development of Internet and social media, numerous web applications have become available to millions of the Internet users over the past few decades. Web 2.0 and social media have become innovative web applications that provide an environment for human social interaction and collaboration. Second, the diffusion of simple and easy-to-use technologies that enable users to interact and design web applications without programming skills have led to vast, previously unknown amounts of user-generated content. Finally, the Internet has enabled communities to connect and collaborate, creating a virtual world of CI. In this study, web enabled CI is defined as a composed ability of individuals who are acting as a single cognitive unit to achieve common goals, think reasonably, solve problems, make decisions, carry out complex tasks, and develop creative ideas collectively through participation and collaboration on the web. Although CI plays a critical role in organizational innovation and collaboration, the dubious quality of CI is still problem that is difficult to solve. In general, the quality level of content collected from the crowd is lower than that from professionals. Thus, it is important to identify determinants of CI quality and to analyze the relationship between CI quality and its usefulness. However, there is a lack of empirical study on the quality factors of web-enabled CI. There exist a variety of web enabled CI sites such as Threadless, iStockphoto or InnoCentive, Wikipedia, and Youtube. One of the most successful forms of web-enabled CI is the Wikipedia online encyclopedia, accessible all over the world. Another one example is Naver KnowledgeiN, a typical and popular CI site offering question and answer (Q&A) services. It is necessary to study whether or not different types of CI have a different effect on CI quality and its usefulness. Thus, the purpose of this paper is to answer to following research questions: ${\bullet}$ What determinants are important to CI quality? ${\bullet}$ What is the relationship between CI quality factors and the usefulness of web-enabled CI? ${\bullet}$ Does CI type have a moderating effect on the relationship between CI quality, its determinants, and CI usefulness? Online survey using Google Docs with email and Kakao Talk was conducted for collecting data from Wikipedia and Naver KnowledgeiN users. A totoal of 490 valid responses were collected, where users of Wikipedia were 220 while users of Naver KnowledgeiN were 270. Expertise of contributors, community size, and diversity of contributors were identified as core determinants of perceived CI quality. Perceived CI quality has significantly influenced perceived CI usefulness from a user's perspective. For improving CI quality, it is believed that organizations should ensure proper crowd size, facilitate CI contributors' diversity and attract as many expert contributors as possible. Hypotheses that CI type plays a role of moderator were partially supported. First, the relationship between expertise of contributors and perceived CI quality was different according to CI type. The expertise of contributors played a more important role in CI quality in the case of Q&A services such as Knowledge iN compared to wiki services such as Wikipedia. This implies that Q&A service requires more expertise and experiences in particular areas rather than the case of Wiki service to improve service quality. Second, the relationship between community size and perceived CI quality was different according to CI type. The community size has a greater effect on CI quality in case of Wiki service than that of Q&A service. The number of contributors in Wikipeda is important because Wiki is an encyclopedia service which is edited and revised repeatedly from many contributors while the answer given in Naver Knowledge iN can not be corrected by others. Finally, CI quality has a greater effect on its usefulness in case of Wiki service rather than Q&A service. In this paper, we suggested implications for practitioners and theorists. Organizations offering services based on collective intelligence try to improve expertise of contributeros, to increase the number of contributors, and to facilitate participation of various contributors.

  • PDF

Development of a Water Quality Indicator Prediction Model for the Korean Peninsula Seas using Artificial Intelligence (인공지능 기법을 활용한 한반도 해역의 수질평가지수 예측모델 개발)

  • Seong-Su Kim;Kyuhee Son;Doyoun Kim;Jang-Mu Heo;Seongeun Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.24-35
    • /
    • 2023
  • Rapid industrialization and urbanization have led to severe marine pollution. A Water Quality Index (WQI) has been developed to allow the effective management of marine pollution. However, the WQI suffers from problems with loss of information due to the complex calculations involved, changes in standards, calculation errors by practitioners, and statistical errors. Consequently, research on the use of artificial intelligence techniques to predict the marine and coastal WQI is being conducted both locally and internationally. In this study, six techniques (RF, XGBoost, KNN, Ext, SVM, and LR) were studied using marine environmental measurement data (2000-2020) to determine the most appropriate artificial intelligence technique to estimate the WOI of five ecoregions in the Korean seas. Our results show that the random forest method offers the best performance as compared to the other methods studied. The residual analysis of the WQI predicted score and actual score using the random forest method shows that the temporal and spatial prediction performance was exceptional for all ecoregions. In conclusion, the RF model of WQI prediction developed in this study is considered to be applicable to Korean seas with high accuracy.

Deep Local Multi-level Feature Aggregation Based High-speed Train Image Matching

  • Li, Jun;Li, Xiang;Wei, Yifei;Wang, Xiaojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1597-1610
    • /
    • 2022
  • At present, the main method of high-speed train chassis detection is using computer vision technology to extract keypoints from two related chassis images firstly, then matching these keypoints to find the pixel-level correspondence between these two images, finally, detection and other steps are performed. The quality and accuracy of image matching are very important for subsequent defect detection. Current traditional matching methods are difficult to meet the actual requirements for the generalization of complex scenes such as weather, illumination, and seasonal changes. Therefore, it is of great significance to study the high-speed train image matching method based on deep learning. This paper establishes a high-speed train chassis image matching dataset, including random perspective changes and optical distortion, to simulate the changes in the actual working environment of the high-speed rail system as much as possible. This work designs a convolutional neural network to intensively extract keypoints, so as to alleviate the problems of current methods. With multi-level features, on the one hand, the network restores low-level details, thereby improving the localization accuracy of keypoints, on the other hand, the network can generate robust keypoint descriptors. Detailed experiments show the huge improvement of the proposed network over traditional methods.

Enhancement of Forecasting Accuracy in Time-Series Data, Basedon Wavelet Transformation and Neural Network Training (Wavelet 변환과 신경망을 이용한 시계열 데이터 예측력의 향상)

  • 신승원;최종욱;노정현
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.2
    • /
    • pp.23-34
    • /
    • 1998
  • Travel time forecasting, especially public bus travel time forecasting in urban areas, is a difficult and complex problem which requires a prohibitively large computation time and years of experience. As the network of target area grows with addition of streets and lanes, computational burden of the forecasting systems exponentially increases. Even though the travel time between two neighboring intersections is known a priori, it is still difficult, if not impossible, to compute the travel time between every two intersections. For the reason, previous approaches frequently have oversimplified the transportation network to show feasibilities of the problem solving algorithms. In this paper, forecasting of the travel time between every two intersections is attempted based on travel time data between two neighboring intersections. The time stamps data of public buses which recorded arrival time at predetermined bus stops was extensively collected and forecast. At first, the time stamp data was categorized to eliminate white noise, uncontrollable in forecasting, based on wavelet conversion. Then, the radial basis neural networks was applied to remaining data, which showed relatively accurate results. The success of the attempt was confirmed by the drastically reduced relative error when the nodes between the target intersections increases. In general, as the number of the nodes between target intersections increases, the relative error shows the tendency of sharp increase. The experimental results of the novel approaches, based on wavelet conversion and neural network teaming mechanism, showed the forecasting methodology is very promising.

  • PDF