본 연구는 인공신경망의 성능을 향상시키기 위한 여러 가지 방법들 중의 하나인 입력변수 선정기법에 관한 연구로서, 일반적으로 널리 사용되고 있는 상관계수를 이용한 입력변수 선정기법 외에 상호정보량을 활용한 방법을 적용하여 인공신경망의 성능을 향상시키고자 하였다. 대상자료는 기상청에서 제공하는 RDAPS자료의 152개 출력값으로 지상강우량의 예측값인 APCP를 포함하고 있으며, 강우관측값간의 상호정보량을 구해 가장 영향력이 큰 변수를 입력변수로 사용하였다. 기존연구결과, 그리고 상관계수만을 이용해서 입력변수를 선정한 결과와 비교해볼 때, 상호정보량을 적용한 경우 입력변수는 주로 바람과 관련된 변수들이 선정되었으며, 평균제곱근오차, 평균제곱근상대오차, 그룹별로 구분한 경우의 절대오차, 그리고 구간별로 구분한 경우의 상대오차를 비교한 경과 상호정보량을 이용한 입력변수 선정방법의 정확도가 전반적으로 높은 것으로 나타났으며, 특히 강우량이 상대적으로 큰 경우의 오차를 많이 감소시킬 수 있는 것으로 나타났다.
Do Yu, Kang;Myung Ho, Lim;Soo In, Sohn;Hyun Jung, Kang;Tae Sung, Park
농업과학연구
/
제48권4호
/
pp.1051-1065
/
2021
Recent times have seen sustained increases in genetically modified (GM) crops not only for cultivation but also for the utility of food and feed worldwide. Domestically, commercial planting and the accidental or unintentional release of living modified (LM) crops into the environment are not approved. Many detection methods had been devised in an effort to realize effective management of the safety of agricultural genetic resources. In order to develop event-specific polymerase chain reaction (PCR) markers for LM crops, we analyzed the genetic information of LM crops. Genetic components introduced into crops are of key importance to provide a basis for the development of detection methods for LM crops. To this end, a total of 18 varieties from four major LM crop species (maize, canola, cotton, and soybeans) were subjected to an analysis. The genetic components included introduced genes, promoters, terminators and selection markers. Thus, if proper monitoring techniques and single or multiplex PCR strategies that rely on selection markers can be established, such an accomplishment can be regarded as a feasible solution for the safe management of staple crop resources.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권3호
/
pp.921-940
/
2015
In this paper, we investigate the multi-resource allocation problem, a unique feature of which is that the multiple resources can compensate each other while achieving the desired system performance. In particular, power and time allocations are jointly optimized with the target of energy efficiency under the resource-limited constraints. Different from previous studies on the power-time tradeoff, we consider a multi-server case where the concurrent serving users are quantitatively restricted. Therefore user selection is investigated accompanying the resource allocation, making the power-time tradeoff occur not only between the users in the same server but also in different servers. The complex multivariate optimization problem can be modeled as a variant of 2-Dimension Bin Packing Problem (V2D-BPP), which is a joint non-linear and integer programming problem. Though we use state decomposition model to transform it into a convex optimization problem, the variables are still coupled. Therefore, we propose an Iterative Dual Optimization (IDO) algorithm to obtain its optimal solution. Simulations show that the joint multi-resource allocation algorithm outperforms two existing non-joint algorithms from the perspective of energy efficiency.
이 글은 전자잡지의 선정, 예산, 정책결정, 장서평가, 보존 등 전자잡지에 관한 장서관리문제를 소개 분석하고 있다. 전자잡지와 관련한 직원과 예산이 주제별 접근방식이나 형태별 접근방식에 따라, 또는 이 두 접근방식을 병행하여 조직될 수 있다고 주장하고 있다. 전자잡지는 인쇄형태 잡지와 마찬가지로 자료식별, 평가, 선정이라는 3단계과정을 거쳐 선정된다. 전자잡지는 인쇄형태잡지에 적용되는 전통적 기준뿐만 아니라 또 다른 기준이 추가로 적용된다. 이 글은 전자잡지의 구독취소와 제적을 언급하고 있지 않지만, 그 중요성은 증가할 것이다. 잡지의 소유권보다는 이용가능성과 접근가능성에 중점을 둔 새로운 이용자위주 평가 방법기법에 대한 요구가 일고 있다.
이 연구에서는 국립중앙도서관이 구축 및 운영하는 웹 아카이브 OASIS 콘텐츠의 특성과 현황을 살펴보았다. 2013년 12월-2014년 11월 OASIS에 공개된 웹사이트 55,581건의 수량적 성장과 주제 분포, '최신 수집자료'의 아카이빙 현황 등을 검토하였다. 급격한 수량적 성장에도 불구하고, '사회과학'(63.6%)에 집중한 주제 편향성, '정치학'(34.7%. 2003년 전체의 21.4%)의 과도한 편중, '최신 수집자료'의 저작자 권위 및 학술적 가치의 근거 미약, 웹사이트와 인스턴스의 혼용에 따른 통계의 중복 및 부정확성 등 문제점이 다시 확인되었다. 양적 성장에 동반하지 않는 질적 수준 문제가 지속되며, 시급한 수집정책 개선과 품질제어가 필요한 것으로 나타났다.
The selection of the optimal partners in supply chain management is one of the most critical success factors. In the past, partners for outsourcing production were selected repeatedly within a closed group of candidates due to the limited information and location of partners. But, the wide use of internet and the development of electronic commerce make it possible that the partners capable of providing the optimal services are selected regardless of their location or nationality. And the concept of partners was limited to the provider of production resources. In the supply chain management, the concept should be extended to the provider of transportation and warehouse due to the high portion of transportation cost among the total production cost Therefore, In this study, we propose an analytical approach to the selection of Production and transportation partners in supply chain management. For this purpose a mathematical model is developed, and then a heuristic algorithm based on tabu search is presented since the model belongs to the NP hard problem.
Archival appraisal has been a significant field and demanding task in thoughts and practice about modern archive, in particular, because of insufficiency of resources for the preservation in comparison with the large scale of recorded information. Appraising records does naturally go with the selecting and acquiring them. In the field of appraisal, however, comprehensive accountability on appraisal is much more important than selection and acquisition. The purpose of this study is the proposition of the theoretic approach to the analysis of the factors concerning the archival appraisal. For this purpose, I would try not the actual practice of the archival appraisal but theoretical categories of archival appraisal decision. The archival Characteristic, Value, and Context will be proposed as theoretical categories for the analysis of archival appraisal decision. Firstly, Characteristic category makes it clear to identify the reliable and authentic records, and then, Value provides us with elucidation about the appraisers' recognition of values. Lastly, Context explains the priority of selection throughout creating, using, interrelationship, and social meaning of archives.
In order to obtain the genetic information on the quantitative characters of black seeded soybeans, which would be needed to improve selection efficiency for breeding high yielding genotype, 45 varieties of black seeded soybeans collected in Chonnam, Korea were grown and variations of several important characters were observed. Heritability of each observed character, phenotypic and genotypic correlations among the characters and contribution of each yield component on grain yield through path coefficient analysis were estimated. Both number of pods per plant and 100-seed weight showed not only high heritability but also highly significant phenotypic and genotypic correlation with seed yield, and hence it was desirable to select plants with more number of pods per plant and higher 100-seed weight than raise seed yield of black seeded soybeans collected in Chonnam. In addition, number of pods per and 100-seed weight were proved to be the most influential variables on the viability of seed yield by path coefficient analysis. Since these showed the high heritability of number of pods per plant, selection of plants with higher 100-seed weight would be more efficient for breeding high yielding genotype.
차세대 무선통신 시스템에서 다중 경로 페이딩의 영향을 효율적으로 감소시키기 위한 방법으로 최근 협력통신 시스템이 각광을 받고 있다. 협력통신 시스템은 정보를 전송하기 위해서 다양한 페이딩 계수를 가지고 있는 협력 릴레이를 사용하기 때문에, 모든 릴레이를 협력통신에 참여 시키는 것은 자원의 낭비를 초래한다. 그러므로 무선자원을 효율적으로 사용하기 위해서는 최적의 릴레이를 선택적으로 사용할 필요가 있다. 본 논문에서는 무선 협력통신 네트워크에서 발생하는 이러한 문제를 해결하기 위하여 Q-Learning 알고리즘을 이용한 협력 릴레이 선택 기법을 제안한다. Q-Learning에서는 자가 학습을 위해서 상태, 행동, 그리고 보상에 대한 파라미터를 정의한다. 이러한 파라미터가 잘 정의 될 때 Q-Learning을 이용하여 우수한 통신 성능을 얻을 수 있다. Q-Learning 알고리즘의 우수성을 보이기 위해서, 수학적인 분석을 통해서 최적의 협력 릴레이를 얻는 기법과 통신 성능을 비교하였다. 모의실험 결과, 제안된 기법에서 Q-Learning 알고리즘 내의 보상을 주는 방식에 따라, 비교 기법과 유사한 심벌오율 성능을 얻으면서 보다 더 적은 협력 릴레이를 선택하는 것을 보였다. 따라서 본 논문에서 제안된 기법은 다수의 릴레이를 사용하는 차세대 무선통신 시스템의 성능 향상을 위한 좋은 접근 방식의 하나로 판단된다.
Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The large number of inputs or conditioning factors for these models, however, can reduce the computation efficiency and increase the difficulty in collecting data. Feature selection is a good tool to address this problem by selecting the most important features among all factors to reduce the size of the input variables. However, two important questions need to be solved: (1) how do feature selection methods affect the performance of machine learning models? and (2) which feature selection method is the most suitable for a given machine learning model? This paper aims to address these two questions by comparing the predictive performance of 13 feature selection-based machine learning (FS-ML) models and 5 ordinary machine learning models on LSA. First, five commonly used machine learning models (i.e., logistic regression, support vector machine, artificial neural network, Gaussian process and random forest) and six typical feature selection methods in the literature are adopted to constitute the proposed models. Then, fifteen conditioning factors are chosen as input variables and 1,017 landslides are used as recorded data. Next, feature selection methods are used to obtain the importance of the conditioning factors to create feature subsets, based on which 13 FS-ML models are constructed. For each of the machine learning models, a best optimized FS-ML model is selected according to the area under curve value. Finally, five optimal FS-ML models are obtained and applied to the LSA of the studied area. The predictive abilities of the FS-ML models on LSA are verified and compared through the receive operating characteristic curve and statistical indicators such as sensitivity, specificity and accuracy. The results showed that different feature selection methods have different effects on the performance of LSA machine learning models. FS-ML models generally outperform the ordinary machine learning models. The best FS-ML model is the recursive feature elimination (RFE) optimized RF, and RFE is an optimal method for feature selection.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.