• Title/Summary/Keyword: The ratio of effective over-consolidation

Search Result 11, Processing Time 0.025 seconds

A New Proposed Technique for a Secondary Consolidation Coefficient Based on the Constant Rate of Strain Test (CRS시험에 의한 2차압밀계수의 결정방법 제안)

  • 김형주;이민선;이용주;김대우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.113-121
    • /
    • 2004
  • The present study is suggested to estimate the degree of secondary consolidation caused by various changes of stress such as loading, unloading and reloading in improving poor subsoil through pre-compression loading construction method and, for this purpose, examined the characteristics of the consolidation of Kunsan clay through incremental loading test (IL) using standard consolidation tester and constant loading rate test (CLR), which were adapted from the constant rate of strain test (CRS). In addition, after CRS test, this study determined the characteristics of secondary consolidation and relationships among void ratio, effective stress and time according to the ratio of effective over-consolidation on reloading at the point of time of random expansion. Kunsan clay had larger expansion and smaller secondary consolidation settlement when the ratio of effective over-consolidation was high. In addition, when loading was applied after the load was removed at once, the secondary consolidation coefficient $C'_{\alpha}$ was smaller than that when the load was removed gradually, and when the ratio of effective over-consolidation was over 1.4 a similar value was produced. Based on the entire settlement resulting from reloading, the secondary consolidation coefficient $C"_{\alpha}$ increased non-linearly with the lapse of time but the final value was similar to that in the case of rapid removal. The strain velocity of void ratio was in a regular linear relationship with the increase of loading time regardless of the ratio of effective over-consolidation in both tests and it grew smaller with the increase of the ratio of effective over-consolidation.tion.

The Application to Sand Spreading Method for Accelerating Sedimentation and Self-Weight Consolidation of Dredged Soils (준설토의 침강.자중압밀촉진을 위한 모래살포공법의 적용성에 관한 연구)

  • 양상호;김재권;심성현;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.767-772
    • /
    • 2003
  • The clay which transported into a pond under the high water content condition have no effective stress which develop from the starting point of sedimentation and self-weight consolidation. Since sedimentation and self-weight consolidation dependent on self-weight of solids is made progress over a long time, to accelerating it have many advantages in the economic view In this paper, sand spreading method which is one of sedimentation and self-weight consolidation acceleration method is studied through a series of experiments considering the mixing ratio of sand and clay. The test results show that the mixing ratio of clay and sand of 1:0.2 is the biggest rate of consolidation and the pouring at the end point of sedimentation considerably effects on consolidation rate.

  • PDF

On the effect of void ratio and particle breakage on saturated hydraulic conductivity of tailing materials

  • Ma, Changkun;Zhang, Chao;Chen, Qinglin;Pan, Zhenkai;Ma, Lei
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.159-170
    • /
    • 2021
  • Particle size of tailings in different areas of dams varies due to sedimentation and separation. Saturated hydraulic conductivity of high-stacked talings materials are seriously affected by void ratio and particle breakage. Conjoined consolidation permeability tests were carried out using a self-developed high-stress permeability and consolidation apparatus. The hydraulic conductivity decreases nonlinearly with the increase of consolidation pressure. The seepage pattern of coarse-particle tailings is channel flow, and the seepage pattern of fine-particle tailings is scattered flow. The change rate of hydraulic conductivity of tailings with different particle sizes under high consolidation pressure tends to be identical. A hydraulic conductivity hysteresis is found in coarse-particle tailings. The hydraulic conductivity hysteresis is more obvious when the water head is lower. A new hydraulic conductivity-void ratio equation was derived by introducing the concept of effective void ratio and breakage index. The equation integrated the hydraulic conductivity equation with different particle sizes over a wide range of consolidation pressures.

Cyclic Liquefaction Behavior Characteristics of Saemangeum Dredged Sand (새만금 준설모래의 동적 액상화 거동 특성)

  • Jeong, Jin-Seob;Choi, Du-Hon;Park, Seung-Hae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.351-354
    • /
    • 2001
  • Undrained cyclic triaxial compression tests were performed on Saemangeum dredged sand to evaluate factors affecting liquefaction strength and liquefaction behaviour characteristics. The results of these tests show that cyclic liquefaction can occur not only very loose sand(Relative density is 30%) but also dense sand(Relative density is 70%). To evaluate effect of the over consolidation ratio on the liquefaction strength, a series of undrained cyclic triaxial compression test was peformed, and the result of this test showed that the liquefaction of this test showed that the liquefaction strength of Saemangeum dredged sand approximately increased to square root of over consolidation ratio in the range of O.C.R value of 1.0 to 4.0. In the anisotropically consolidated sample tests, the liquefaction strength is increased by increasing the effective consolidation ratio.

  • PDF

Classification and Water Quality Management of Agricultural Reservoirs (농업용 저수지의 유형분류 및 수질관리)

  • 윤경섭;이광식;김형중;김호일
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.66-77
    • /
    • 2003
  • Monitoring data from agricultural reservoirs throughout the country were analyzed to classify agricultural reservoirs according to physical characteristics and COD concentrations, and evaluate the relationships bet-ween water quality items. The physical and chemical data of total 498 reservoirs were analyzed from 1990 to 2001. Average COD, TP, TN, Chl-a, SS concentrations for the reservoirs and pollutant loadings from their watersheds were used for the analysis. It was possible that reservoirs were classified to 4 types using the relationships between the ratios of effective storage per water surface (ST/WS ratio) and COD concentrations. It is recommended that the improvement measures of polluted reservoirs should be performed as following order : integrated consolidation type (complex mechanism type) $\rightarrow$ watershed consolidation type $\rightarrow$ integrated consolidation type (external mechanism type) $\rightarrow$ in-lake consolidation type $\rightarrow$ conservation type and the depth (ST/WS ratio) of reservoir maintained over 5~6 m for water quality improvement. The decision coefficients ($r^2$) between Chl-a and other items (COD, T-P, SS, T-N) were 0.6915, 0.6732, 0.5327, 0.3352, respectively. Therefore, reservoir managers could evaluate the trophic state of reservoirs by COD concentrations.

Consolidation characteristics of Nangton River clay deposit

  • Hiroyuki Tanaka;Osamu Mishima;Masanori Tanaka;Park, Sung-Zae;Jeong, Gyeong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11b
    • /
    • pp.3-11
    • /
    • 1999
  • It has been said from previous studies that the preconsolidation pressure (p$\sub$c/)of Nangton Rive. deposit is considerably less than the in situ effective burden pressure (p'$\sub$$\upsilon$ο/). Question has risen whether this small pc vale is due to under consolidation or unsuitable laboratory test including low small quality. As a cooperative research program between PHRI (Port and Harbor Research Institute) and Pusan National University, an extensive soil investigation was carried out at a site of Yangsan, Pusan, using the Japanese sampler. It Is found that although p$\sub$c/ value at the site is slightly greater than p'$\sub$$\upsilon$ο/, its over consolidation ratio (OCR) is quite small compared with aged normally consolidated clay in Japan.

  • PDF

A Study on the Consolidation Behavior of Cohesive Soils Improved by Penetrated and Partly Penetrated Sand Compaction Piles (관통 및 미관통 SCP 개량지반의 압밀거동 비교연구)

  • Kim, Young-Nam;Chae, Young-Su;Lee, Kang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.706-713
    • /
    • 2004
  • This paper introduced an alternative method called USCP (Unpenetrated Sand Compaction Pile). In USCP, the toe of the sand pile does not reach to the lower supporting layer. Hence it is possible to reduce the amount of sand required. However, the degree of improvement could not be the same as SCP. Effective soil improvement, nevertheless, might be possible by combining both methods. In this paper, an improved method that cross over both SCP and USCP was discussed. And in order to verify applicability to a clay layer, consolidation behaviors with different conditions were analyzed and compared using FEM(Finite Element Method) based on the elasto-viscosity theory. From the results, it is concluded for the characteristic of settlement of USCP that the lower degree of replacement and the smaller ratio of penetration($H_d/H$), the larger is the settlement of the lower part of the clay layer comparing to the layer with no improvement. It is also concluded that the ratios of allotment of stress (m) calculated from the final settlements with 30% of degree of replacement are $1.8{\sim}3.3$ for $H_d/H=lOO%,\;1.8{\sim}4.0\;for\;H_d/H=75%,\;and\;1.8{\sim}3.8\;for\;H_d/H=50%$. Besides, the ratio of allotment of stress decreased as the degree of replacement decreased.

  • PDF

Correlation of the Consolidation Characteristics of Inland and Harbour District Soil (육상 및 항만지역상의 압밀특성치의 상관성)

  • 도덕현;이성태;강우묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.25 no.4
    • /
    • pp.50-60
    • /
    • 1983
  • 305 samples of alluvial deposit in inland and harbour districts were selected and consolidation charateristics of the alluvium were put in order statiscally. The correlations between them were as follows. 1. The relationships between LL(liguid limit) and Cc (compression index) were explained as Cc=0. 03(LL-21. 7) in case of inland district soil and as Cc=0. 019(LL-19) in case of harbour district soil. As compared with formular proposed by Skernpton, the gradient of this linear line was slight steep. 2. The relationships between PI(plastic index) and Cc were explained as Cc=0. 063 PI-0. 52 in case of inland district soil and Cc=0. 043 PI-0. 31 in case of harbour district soil. 3. As void ratio and natural moisture content were increased, Cc was increased, and as wet density was increased, Cc was decreased with a gentle curve. 4. As LL and P1 increased, mv(coefficient of volume compressibility) was increased but if LL and P1 was increased beyond a certain extend, mv has a tendency of constant value, that is, mv show a tendency to take constant value in the very soft clay. and mv in P=2. 5kg/cm$^2$ was about l${\times}$ l0-$^1$cm$^2$/kg in case of land district soil and 6x 10-$^1$crn$^2$/kg in case of harbour district soil lower than that in P=0. 25kg/crn2. 5. Cv(coefficient of consolidation) was a tendency to decrease with a gentle curve as LL was increased, and Cv in P=0. 25kg/crn2 was about 3x l0-$^1$crn$^2$/min larger than that in P=2. 5kg/crn$^2$. 6. Relationships between Py(pre-consolidation pressure) which is included over consolidation soil and ∑r1h(effective over-burden pressure) were explained as Py=l. 12 ∑r'h in case of land district soil and as Py=l. l5∑r'h in case of harbour district soil. 7. Some of the properties show good correlations between them, practical and effective applications of these correlations are expected in the planning and excution of soil investigation and also in the evaluation of the results.

  • PDF

Analysis of Void Closure in the Upsetting Process of Large-Ingot (대형강괴 업셋팅공정의 기공압착 해석)

  • 박치용;조종래;양동열;김동진;박일수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1877-1889
    • /
    • 1992
  • Upsetting is performed in open-die press forging to deform metal in all directions in order to enhance soundness of a product and reduce directionality of properties caused by casting. It is necessary to ensure sufficient forging ratio for subsequent cogging operations and consolidate the void along the centerline. To obtain these benefits, the upper die shape (dome and dished shape) is considered as an upsetting parameter. Thermo-viscoplastic finite element analysis has been carried out so as to understand the influence of upper die shape on the effective strain, hydrostatic stress and temperature in the upset-forged ingots without internal defects. The analysis is focused on the investigation into internal void closure in ingots with pipe holes and circular voids. The computational results have shown that the volume fraction of the void is independent of the circular void size and the closure of internal voids is much more influenced by the effective strain than the hydrostatic stress around the void. It is finally suggested that the height reduction must be over 35% for consolidation of internal voids.

Estimating pile setup parameter using XGBoost-based optimized models

  • Xigang Du;Ximeng Ma;Chenxi Dong;Mehrdad Sattari Nikkhoo
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.259-276
    • /
    • 2024
  • The undrained shear strength is widely acknowledged as a fundamental mechanical property of soil and is considered a critical engineering parameter. In recent years, researchers have employed various methodologies to evaluate the shear strength of soil under undrained conditions. These methods encompass both numerical analyses and empirical techniques, such as the cone penetration test (CPT), to gain insights into the properties and behavior of soil. However, several of these methods rely on correlation assumptions, which can lead to inconsistent accuracy and precision. The study involved the development of innovative methods using extreme gradient boosting (XGB) to predict the pile set-up component "A" based on two distinct data sets. The first data set includes average modified cone point bearing capacity (qt), average wall friction (fs), and effective vertical stress (σvo), while the second data set comprises plasticity index (PI), soil undrained shear cohesion (Su), and the over consolidation ratio (OCR). These data sets were utilized to develop XGBoost-based methods for predicting the pile set-up component "A". To optimize the internal hyperparameters of the XGBoost model, four optimization algorithms were employed: Particle Swarm Optimization (PSO), Social Spider Optimization (SSO), Arithmetic Optimization Algorithm (AOA), and Sine Cosine Optimization Algorithm (SCOA). The results from the first data set indicate that the XGBoost model optimized using the Arithmetic Optimization Algorithm (XGB - AOA) achieved the highest accuracy, with R2 values of 0.9962 for the training part and 0.9807 for the testing part. The performance of the developed models was further evaluated using the RMSE, MAE, and VAF indices. The results revealed that the XGBoost model optimized using XGBoost - AOA outperformed other models in terms of accuracy, with RMSE, MAE, and VAF values of 0.0078, 0.0015, and 99.6189 for the training part and 0.0141, 0.0112, and 98.0394 for the testing part, respectively. These findings suggest that XGBoost - AOA is the most accurate model for predicting the pile set-up component.