• 제목/요약/키워드: The rate of expansion

검색결과 1,400건 처리시간 0.032초

팔라듐에 관한 수소저장과 팽창거동에 관한 수치해석 (Numerical Study on Hydrogen Absorption and Expansion Behavior on Palladium)

  • 김세웅;황철민;장태익;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.256-264
    • /
    • 2007
  • In order to calculate the relation between the hydrogen and the hydrogen absorption metals in the atomic level, Embedded Atom Method(EAM) is recommended. In this study, we had constructed the EAM programs from constitutive formulas and parameters of the hydrogen and palladium for the purpose of predicting the expansion behavior on hydrogen absorbing in the geometric shape of hydrogen absorption metals, as palladium bars and plates. And the EAM analyses data were compared with the experiment data by using electrochemical method. As results, it is note that the expansion rate in thickness of the palladium plate model by EAM analyses is about 4 times larger than width and length, be similar to experiment results. Also, in the microscopic and macroscopic level the expansion behavior through EAM analyses show good agreement with experiment data.

UO2 및 (U1-yCey)O2 소결체의 열팽창 측정 및 평가 (The Linear Thermal Expansion Measurements and Estimations for UO2 and (U1-yCey)O2 Pellet)

  • 김동주;김용수;이영우
    • 한국세라믹학회지
    • /
    • 제42권5호
    • /
    • pp.346-351
    • /
    • 2005
  • The linear thermal expansions of $UO_2$ and $(U_{1-y}Ce_y)O_2$ pellet were measured from room temperature to $1400^{\circ}C$ as a function of Ce contents (0, 7.63, 14.84, and $21.68 mol\%$) by using the TMA(Thermo-Mechanical Analysis) method. From the measured data, the linear thermal expansion rate, the coefficient of linear thermal expansion and density variation with temperature were calculated, and the best-fitted temperature-dependent equations were recommended. It was shown that the rate and coefficient of $(U_{1-y}Ce_y)O_2$ thermal expansion increased and the density decreased with increasing Ce contents.

Inlay wax의 열팽창에 관한 연구 (A study on Thermal expansion of Inlay waxes)

  • 남상용;곽동주;차성수
    • 대한치과기공학회지
    • /
    • 제30권2호
    • /
    • pp.17-22
    • /
    • 2008
  • The purpose of this study was to observe the thermal expansion of the inlay waxes at temperature. Inlay pattern wax shows not only a high coefficient of expansion but also a tendency to warp or distort when allowed to stand unrestrained. The thermal expansion of inlay waxes was tested according to the treatment conditions for 10 minutes at $40^{\circ}C$ The thermal expansion of inlay waxes at various temperatures was measured with an electro dial gauge. The results were as fellows: 1. It is shown that the rate of thermal expansion of wax A is 0.2%, wax B is 0.29%, wax C is 0.38%, and wax D is 0.22% at $40^{\circ}C$ 2. It is shown that the coefficient of thermal expansion of wax A is $106{\times}10^{-6}/^{\circ}C$, wax B is $152{\times}10^{-6}/^{\circ}C$, wax C is $199{\times}10^{-6}/^{\circ}C$, and wax D is $116{\times}10^{-6}/^{\circ}C$ at $40^{\circ}C$ 3. The thermal expansion of the inlay waxes at $40^{\circ}C$ was shown to increase in the order of wax C, B, D, A.

  • PDF

후방 압출 펀치의 마멸 저감을 위한 금형 형상 설계 (Design of punch shape for reducing the punch wear in the backward extrusion)

  • 박태준;이동주;김동진;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.575-578
    • /
    • 2000
  • Die design to minimize the die wear in the cold forging process is very important as it reduce the production cost and the increase of the production rate. The quantitative estimation for the die wear is too hard because the prediction of the die wear is determined with many process variables. So, in this paper, the optimal shape of the backward extrusion punch is newly designed through the FE-analysis considering the surface expansion and Archard's wear model in order to reduce the rapid wear rate that is generated for the backward extrusion product exceeding the forming limit. The main shape variables of the backward extrusion punch are the flat, angle, and round of the punch nose part. As the flat and angle of the punch nose are larger, the surface expansion is reduced. and, the wear rate is decreased according to the reduction of the punch round. These results obtained through this study are applied to the real manufacturing process, it is implemented the reduction of the wear rate.

  • PDF

홀확장 잔류응력 예측을 위한 유한요소해석 (The Finite Element Analysis for Prediction of Residual Stresses Induced by Cold Expansion)

  • 김철;양원호;고명훈;허성필;현철승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.470-474
    • /
    • 2000
  • Cold expansion of fastener holes is a mechanical process widely used in the aerospace industry. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses on the hole surface. The residual stress profile depends on the parameters of cold expansion, which are, expanding rate, inserting direction of mandrel, material properties etc. and the method to confirm this profile is only measurement by X-ray diffractometer. Despite its importance to aerospace industries, little attention has been devoted to the accurate modelling of the process. In this paper, Two-dimensional axisymmetric finite element simulations have been conducted for the cold expansion in an aluminium plate in order to predict the magnitude and distribution of the residual stress and plastic deformation. Maximum compressive residual stress could be increase about 7 percent using the 2-step cold expansion method.

  • PDF

열펌프의 성능 최적화에 관한 연구 (Optimization of Heat Pump Systems)

  • 최종민;윤린;김용찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.538-541
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump are investigated at various operating conditions. Cooling capacity of the heat pump system is strongly dependent on load conditions. The heat pump system is very sensitive with a variation of refrigerant charge amount. But, the performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF

폭발접합된 원자력 증기발생기 튜브/튜브시트 계면 특성에 관한 연구 (A Study on the Characteristics of the interface in Tube / Tubesheet of the Nuclear Steam Generator by Explosive Bonding)

  • 이병일;공창식;심상한;강정윤;이상래
    • 화약ㆍ발파
    • /
    • 제17권4호
    • /
    • pp.32-50
    • /
    • 1999
  • This study deals with interface charactristics of tube and tubesheet of the nuclear steam generator by the explosive expansion in order to take advantage of optimum expansion ratio, pull-out strength and leakage tightness and improvement of the resisitance on the stress corrosion cracking for low residual stress. The paper also show the relationship between roll, hydraulic and explosive expansion. The results obtain are as follows (1) Because of the explosive bonding is to use the high speed pressure and energy by the explosive, workability is good, bonding region is homogenous (2) Expansion ratio is 2.7%, Pull-out strength 850kg, Leakage strength $500kg/cm^2$. Clearance gap is 10~30mm in case of explosive expansion and interface structure of the tube and tubesheet is optimum condition. (3) As the transition region of the explosive expansion is inactive, the resistance of the stress corrosion cracking is increases 30~40% compare to the roll and hydraulic expansion.

  • PDF

마이크로핀관의 확관 전후 증발열전달 특성에 관한 실험적 연구 (An Experimental Study on Evaporative Heat Transfer Characteristics in Micro-Fin Tubes Before and After Expansion Process)

  • 전상희;황윤욱;윤석호;김민수
    • 설비공학논문집
    • /
    • 제12권10호
    • /
    • pp.932-940
    • /
    • 2000
  • An experimental study on evaporative heat transfer characteristics in micro-fin tubes before and after expansion process has been performed with R-22. Single-grooved micro-fin tubes with outer diameter of 9.52 mm were used as test sections, and it was uniformly heated by applying direct current to the test tubes. Experiments were conducted at mass flow rates of 20 and 30 kg/hr. For each mass flow rate condition, evaporation temperature was set at 5 and $15^{\circ}C$and heat flux was changed from 6 to 11 kW/$m^2$ The evaporative heat transfer coefficient of micro-fin tubes after expansion is decreased because of the crush of fins and enlargement of inner diameter compared to that before expansion. Convective boiling effect decreased remarkably at higher quality range in the micro-fin tube after expansion, and the difference of the heat transfer coefficient in micro-fin tubes before and after expansion was greater for higher quality region. The evaporative heat transfer coefficient of the micro-fin tube after expansion was 19.9% smaller on the average than that before expansion.

  • PDF

A Generalized Correlation and Rating Charts for Mass Flow Rate through Capillary Tubes with Several Alternative Refrigerants

  • Choi Jong Min;Jang Yong Hee;Kim Yongchan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권4호
    • /
    • pp.192-197
    • /
    • 2004
  • A capillary tube, which is a common expansion device in small sized refrig-eration and air-conditioning systems, should be redesigned properly to establish an optimum operation cycle of a refrigerating system with alternative refrigerants. Based on experimental data for R-22, R-290, and R-407C, an empirical correlation is developed to predict mass flow rate through capillary tubes. Dimensionless parameters are derived from the Buckingham Pi theorem, considering the effects of operating conditions and capillary tube geometry on mass flow rate. Approximately $97\%$ of the present data are correlated within a relative deviation of $\pm\;10\%.$ The present correlation also predicts the data obtained from open literature within $\pm\;15\%.$ In addition, rating charts of refrigerant flow rate for R-12, R-22, R-134a, R-152a, R-407C, R-410A, R-290, and R-600a are developed.

수동폐확장과 능동호흡강화 기법이 건강한 성인 폐기능에 미치는 영향 (The Effect of Passive Lung Expansion Technique and Active Respiration Enhancement Technique on Lung Function in Healthy Adults)

  • 이동진;이연섭
    • 대한통합의학회지
    • /
    • 제8권4호
    • /
    • pp.155-161
    • /
    • 2020
  • Purpose : This study was conducted to investigate the effect of positive active pressure technique and active breathing technique on lung function in healthy adults. Methods : In this study, the passive lung expansion technique and active respiration enhancement technique using an air mask bag unit were conducted in 30 normal adults to observe changes in pulmonary function with forced vital capacity (FVC), Forced expiratory volume at one second (FEV1). In order to observe the change in the level of respiratory function, we would like to investigate the peak expiratory flow (PEF) and the forced expiratory flow (FEF 25-75 %). Results : As a result of this study, there was no significant difference in comparison between the passive lung expansion technique and the active breathing enhancement technique (p>.05). The passive lung expansion technique effectively increased the effortful expiratory volume and the median expiratory flow rate of 1 second (p<.05). And the passive lung expansion technique effectively increased the effortless lung capacity and the maximum expiration flow rate (p<.05). Conclusion : The passive lung expansion technique effectively increases the range of motion of the lungs and chest cages, intrathoracic pressure, and elasticity of the lungs, and the active breathing technique increases the muscle functions such as the diaphragm and the biceps muscles. It is expected that it will be able to selectively improve the respiratory function of patients with respiratory diseases or functional limitations as it is found to be effective.