• Title/Summary/Keyword: The long-term durability

Search Result 494, Processing Time 0.029 seconds

The Reclamation of Tidal Land and the Making-Group of Landscape in Naepo Area, Korea" - Centering around the Garorim Bay from the $19^{th}C$ to 1960s - (내포지역 해만개척의 전개와 경관변화의 사회적 주체 -조선후기~1960년대 가로림만 일대를 중심으로 -)

  • 전종한
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.2
    • /
    • pp.206-223
    • /
    • 2003
  • Bays and caps represent the physical characteristics of Naepo area in Korea. And reclamation of tidal land presents a clue toward the understanding of regional identities and landscape changes in this area. Reclamation of tidal land in the Garorim bay that is representative of the physical geographies of Naepo area had trended toward 'the diffusion of salt ponds' during Joseon dynasty. Hereafter the Japanese imperialism, the reclamation had tumed to 'the reclamation of arable lands' by drainage. But, at the same time the land use of salt pond that had been the most appropriate strategy of adaptation for the ecological environments of this area has showed a sort of the geographical long-term durability. And the great landlords that had emerged during Japanese imperialism were the Yeom-han(鹽漢, laborers who engaged in salt production) in former times. They as a new local elites have played a leading role in the reclamation of tidal land and the making of regional landscape.

Petrological Characteristics and Nondestructive Deterioration Assessments for Foundation Stones of the Sebyeonggwan Hall in Tongyeong, Korea (통영 세병관 초석의 암석학적 특성 및 비파괴 손상평가)

  • Han, Doo Roo;Kim, Sung Han;Park, Seok Tae;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.199-212
    • /
    • 2021
  • The Sebyeonggwan Hall (National Treasure No. 305) is located on the Naval Headquarter of Three Provinces in Tongyeong, and it has partly undergone with several rebuilding, remodeling, repairing and restorations since it's the first establishment in Joseon Dynasty (AD 1605) of ancient Korea. This study focuses on 50 foundation stones that comprise the Sebyeonggwan. These stones are made of six rock types and currently have various shapes of the surface damages. As the foundation stones, the dominant rock type was dacitic lapilli tuffs, and provenance-based interpretation was performed to supply alternative stones for conservation. Most of the provenance rocks for foundation stones showed highly homogeneity with their corresponding stones of petrography, mineralogy and magnetic susceptibility. According to surface deterioration assessments, the most serious damages of the stones were blistering and scaling. The deterioration mechanism was identified through the analysis of inorganic contaminants, and the primary reason is considered salt weathering caused by sea breeze and other combined circumstances. Based on the mechanical durability of the stones, there was no foundation stone that required the replacement of its members attributed to the degradation of the rock properties, but conservation treatment is considered necessary to delay superficial damage. The foundation stones are characterized by a combined outcome of multiple petrological factors that caused physical damage to surfaces and internal defects. Therefore, it's required to diagnosis and monitoring the Sebyeonggwan regularly for long-term preservation.

Technical Index for the Maintenance of Watertightness of the Roof of a Large-Span Membrane Structure (대공간 막 구조물 지붕의 수밀성능 확보를 위한 유지관리 지표 연구)

  • Oh, Sang-Keun;Kim, Dong-Bum;Lee, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.1
    • /
    • pp.51-59
    • /
    • 2011
  • With the increased demand for membrane structures in recent years, there have been many studies of their mechanical properties, to the extent that such structures have become recognized as independent structures with a level of safety and durability comparable to those of other general structures. But in reality, the study for the maintenance of membrane structures has not been as active. In particularly, the study of watertightness from the perspective of maintenance has been very limited. Accordingly, a study on securing watertightness performance and the guidelines for maintenance is necessary. In this study, through a case study of water leakage accidents in membrane structures overseas, causes of leakage were selected from the membrane material itself, joint parts and open door of roof part in membrane structure. The water leakage and deterioration elements were analyzed from those leakage causes. The degree of importance of the water leakage and deterioration index was also designated using the AHP (Analytic Hierarchy Process) method. As a result, the basic technical index was suggested for the maintenance of the roofs of large-span membrane structures to prevent water leakage. This index will be used to make a guideline for the long-term maintenance of the roofs of large-span membrane structures.

Effect of Hydrogen Purge Mode on the Polymer Electrolyte Membrane Fuel Cell (PEMFC) Performance under Dead-ended Anode Operation (양극 닫힌계 작동에서 수소 배출 방법에 의한 고분자전해질 연료전지 성능 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.687-693
    • /
    • 2019
  • As the hydrogen fuel cell market is expanded starting from hydrogen electric vehicle and power generation field, the demand for fuel cells and hydrogen increases recently. Therefore, research works on fuel cell durability and fuel efficiency are required in order to activate the fuel cell market and commercialization. A dead-ended anode system was used in this study to optimize the fuel cell performance and fuel efficiency. The effect of purge condition according to the applied current and hydrogen supply pressure on the fuel cell performance were evaluated. In addition, the influence of water back diffusion on the different electrolyte membrane thickness was analyzed. The accumulated water was purged with a solenoid valve in the case of 3% voltage decrease in the dead-ended anode system. The experiment was performed with the hydrogen supply pressure of 0.1~0.5 bar and purge duration of 0.1~1 second. A maximum fuel efficiency of 98.9% was achieved under the purge duration of 0.1 s and hydrogen supply pressure of 0.1 bar with a NR 211 (25.4 um) membrane. However, the fuel cell performance decreased in a long-term operation due to some frequent flooding. The fuel efficiency and purge interval increased due to decreased back diffusion rates of the water and nitrogen with a NR 212 (50.8 um) membrane.

Experimental Study for Evaluation of Chloride Ion Diffusion Characteristics of Concrete Mix for Nuclear Power Plant Water Distribution Structures (원전 취배수 구조물 콘크리트 배합의 염소이온 확산특성 평가를 위한 실험적 연구)

  • Lee, Ho-Jae;Seo, Eun-A
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.112-118
    • /
    • 2022
  • In this study, the diffusion characteristics were evaluated using the concrete mix design of nuclear safety-related structures. Among the concrete structures related to nuclear power safety, we selected the composition of intake and drainage structures that are immersed in seawater or located on the tidal platform and evaluated the chloride ion permeation resistance by compressive strength and electrical conductivity and the diffusion characteristics by immersion in salt water. analyzed. Compressive strength was measured on the 1st, 7th, 14th, 28th, 56th, and 91st days until the 91st day, which is the design standard strength of the nuclear power plant concrete structure, and chloride ion permeation resistance was evaluated on the 28th and 91st. After immersing the 28-day concrete specimens in salt water for 28 days, the diffusion coefficient was derived by collecting samples at different depths and analyzing the amount of chloride. As a result, it was found that after 28 days, the long-term strength enhancement effect of the nuclear power plant concrete mix with 20% fly ash replacement was higher than that of concrete using 100% ordinary Portland cement. It was also found that the nuclear power plant concrete mix has higher chloride ion permeation resistance, lower diffusion coefficient, and higher resistance to salt damage than the concrete mix using 100% ordinary Portland cement.

Characteristics of Autogenous Shrinkage for Concrete Containing Blast-Furnace Slag (고로슬래그를 함유한 콘크리트의 자기수축 특성)

  • Lee Kwang-Myong;Kwon Ki-Heon;Lee Hoi-Keun;Lee Seung-Hoon;Kim Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.621-626
    • /
    • 2004
  • The use of blast-furnace slag (BFS) in making not only normal concrete but also high-performance concrete has several advantages with respect to workability, long-term strength and durability. However, slag concrete tends to show more shrinkage than normal concrete, especially autogenous shrinkage. High autogenous shrinkage would result in severe cracking if they are not controlled properly. Therefore, in order to minimize the shrinkage stress and to ensure the service life of concrete structures, the autogenous shrinkage behavior of concrete containing BFS should be understood. In this study, small prisms made of concrete with water-binder (cement+BFS) ratio (W/B) ranging from 0.27 to 0.42 and BFS replacement level of $0\%$, $30\%$, and $50\%$, were prepared to measure the autogenous shrinkage. Based on the test results, thereafter, material constants in autogenous shrinkage prediction model were determined. In particular, an effective autogenous shrinkage defined as the shrinkage that contributes to the stress development was introduced. Moreover, an estimation formula of the 28-day effective autogenous shrinkage was proposed by considering various W/B's. Test results showed that autogenous shrinkage increased with replacement level of BFS at the same W/B. Interestingly, the increase of autogenous shrinkage is dependent on the W/B at the same content of BFS; the lower W/B, the smaller increasing rate. In concluding, it is necessary to use the combination of other mineral admixtures such as shrinkage reducing admixture or to perform sufficient moisture curing on the construction site in order to reduce the autogenous shrinkage of BFS concrete.

Fundamental Performance Evaluation of Recycled Aggregate Concrete with Varying Amount of Fly Ash and Recycled Fine Aggregate (순환잔골재 및 플라이애쉬 혼입률에 따른 순환골재 콘크리트의 압축강도, 염소이온 투과 및 중성화 저항성 평가)

  • Sim Jongsung;Park Cheolwoo;Moon Il-Whan;Lee Hee-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.793-801
    • /
    • 2005
  • This study investigates fundamental properties of recycled aggregate concrete which incorporated 100% recycled coarse aggregate and various amount of recycled fine aggregate. In addition, for the purpose of the improvement of long term strength and durability, a part of cement was replaced with fly ash. Compressive strength and resistance to chloride ion penetration and carbonation were investigated. When the coarse aggregate was completely replaced with the recycled the replacement ratio of the fine aggregate with the recycled was recommended to be limited below 60% in the consideration of strength. The strength of the steam-cured specimen was very comparable to the wet-cured at 28 days. As fly ash content increased the resistance to chloride ion penetration was increased. The chloride ion penetrability based on the charge passed was found to be low at 21 days and very low at 56 days, respectively. Carbonation depth and carbonation velocity coefficient increased as the fly ash content increased and the relationship between the carbonation depth and recycled fine aggregate replacement ratio was not clear. Up to 28days, however, the measured carbonation depth was mostly less than 10mm which could be considered as low.

Spatial Characteristics of the Relationships Between Urban Large Retailer and Agro-food Suppliers (대도시 대형유통업체의 농식품 구매 및 거래관계의 공간적 특성)

  • Yoon Se-Young;Lee Jong-Ho
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.131-152
    • /
    • 2005
  • The purpose of this paper is to find out the spatial characteristics of the relationships between urban large retailer and agro-food suppliers. For this purpose, Dong-A department store which is one of the most famous local distribution company was selected as a case study firm. The case study company has its own systematic food supply chain in the process of food procurement, selection, delivery, and marketing. It mainly does businesses in Daegu and Gyeongbuk province, but also procures and delivers products all around the country. Customers' recent concerns over the freshness and the period of circulation made the company use the local physical distribution system that it purchases products in nearby areas and perform procurement and delivery in nationwide areas. It is identified that trading types are significantly different by locations of suppliers in that more thin 40$\%$ of suppliers in Daegu are food manufacturers, whereas suppliers in Gyeongbuk mainly belong to the ones in fresh food production areas. In terms of durability of the retailer-supplier relation, the case study firm has relatively long-term relationship with suppliers, maintaining the relationship fer over 5 years in more than 70$\%$ of suppliers.

  • PDF

Plasma-mediated Hydrophobic Coating on a Silicate-based Yellow Phosphor for the Enhancement of Durability (플라즈마 소수성 코팅을 이용한 실리케이트계 황색형광체의 내구성 개선에 관한 연구)

  • Jang, Doo Il;Jo, Jin Oh;Ko, Ranyoung;Lee, Sang Baek;Mok, Young Sun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.214-220
    • /
    • 2013
  • Hydrophobic coating on a silicate-based yellow phosphor ($Sr_2SiO_4:Eu^{2+}$) was carried out by using hexamethyldisiloxane (HMDSO) precursor in an atmospheric pressure dielectric barrier discharge plasma reactor, eventually to improve the long-term stability and reliability of the phosphor. The phosphor powder samples were characterized by a scanning electron microscope (SEM), a transmission electron microscope (TEM), a fluorescence spectrophotometer and a contact angle analyzer. After the coating was prepared, the contact angle of the phosphor powder increased to $133.0^{\circ}$ for water and to $140.5^{\circ}$ for glycerol, indicating that a hydrophobic layer was formed on its surface. The phosphor coated with HMDSO exhibited photoluminescence enhancement up to 7.8%. The SEM and TEM images of the phosphor powder revealed that the plasma coating led to a morphological change from grain-like structure to smooth surface with 31~46 nm thick hydrophobic layer. The light emitting diode (3528 1 chip LED) fabricated with the coated phosphor showed a substantial enhancement in the reliability under a special test condition at $85^{\circ}C$ and 85% relative humidity for 1,000 h (85/85 testing). The plasma-mediated method proposed in this work may be applicable to the formation of 3-dimensional coating layer on irregular-shaped phosphor powder, thereby improving the reliability.

Evaluation of Field Applicability of Pavement Materials Using Wood Chips (목재칩을 활용한 포장재의 현장 적용성 평가)

  • Lee, Jundae;Bang, Sungtak;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.13-19
    • /
    • 2015
  • Construction materials using soil which is the most common material around us have many advantages, but their long-term durability and sensation of walking as pavements have problems. Therefore, they are used after compaction or mixed with various hardening agents such as lime and cement for strength enhancement. However, studies on the behavior of pavement materials mixed with environment-friendly hardening agents or admixtures to improve walking property are still insufficient. In this study, therefore, in order to evaluate the appropriate mixing ratio and field application characteristics of pavement materials using mixed soils with environment-friendly hardening agents and natural materials such as wood chips, mechanical tests were performed to evaluate the rational mixing ratios and the ball test was performed as an elasticity test to evaluate the field applicability. The results suggest that the content of wood chips should be selected at 1.5% or lower according to the purpose of the structure, and the hardening agent at 10~15%. The evaluation results for GB/SB coefficient ratio which indicates the walking property show that the appropriate mixing ratio of the hardening agent in terms of the sensation of walking is 15% of lower, but different mixing ratios should be chosen according to the proportion of wood chips.