• Title/Summary/Keyword: The long-term durability

Search Result 500, Processing Time 0.03 seconds

The Prediction of tong-Term Creep Behavior of Recycled PET Polymer Concrete (단기 크리프 실험을 이용한 PET 재활용 폴리머콘크리트의 장기 크리프거동 예측)

  • Jo Byung-Wan;Tae Ghi-Ho;Kim Chul-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.521-528
    • /
    • 2004
  • In general, polymer concrete has more excellent mechanical properties and durability than Portland cement concrete, but very sensitive to heat and has large deformations. In this study, the long-term creep behaviors was predicted by the short-term creep test, and then the characteristic of creep of recycled-PET polymer concrete was defined by material and experimental variables. The error in the predicted long-term creep values is less than 5 percent for all polymer concrete systems. The filler carry out an important role to restrict the creep strains of recycled PET Polymer concrete. The creep strain and specific on using the $CaCO_3$ were less than using fly-ash. The creep increases with an increase in the applied stress, but not proportional the rate of stress increase ratio. The creep behavior of polymer concrete using recycled polyester resin is not a linear viscoelastic behavior.

A Study on Field Application of Glass Fiber-reinforced Asphalt Mixtures (유리섬유 보강 아스팔트 혼합물의 현장 적용성 평가)

  • Ohm, Byung-Sik;Yoo, Pyeong-Jun;Ham, Sang-Min;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.67-74
    • /
    • 2016
  • PURPOSES : This study evaluated the field applicability and laboratory performance of glass fiber-reinforced asphalt (GFRA) mixtures. METHODS : The general hot-mix asphalt (HMA) and GFRA mixtures were paved in five sites, including three national highways, one express highway, and an arterial road, to evaluate field applicability and durability. The plant mixing and construction method for the GFRA were similar to those for the general HMA. The lab performances of the field samples were relatively compared through the mechanical measures from the Marshall stability, indirect tensile strength, and dynamic stability. The field performance was surveyed after a year. RESULTS : The lab tests verified the superior lab performances of the GFRA compared to the general HMA. The Marshall stability of the GFRA increased for about 128% of the general HMA. The indirect tensile strength of the GFRA was 115% greater than that of the general HMA. The dynamic stability of the GFRA resulted in 16,180 reps/mm, which indicated that high rut resistance may be expected. No noticeable defects, such as cracks or deformation, were observed for the GFRA sections after a year. CONCLUSIONS : The lab tests and field survey for the five GFRA sites resulted in superior performances compared to the general HMA. The relatively low-cost GFRA, which required no pre-processing procedures, such as polymer modification, may be a promising alternative to the polymer-modified asphalt mixtures. The long-term performance will be verified by the superior field durability of the GFRA in the near future.

Structural health monitoring of a newly built high-piled wharf in a harbor with fiber Bragg grating sensor technology: design and deployment

  • Liu, Hong-biao;Zhang, Qiang;Zhang, Bao-hua
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.163-173
    • /
    • 2017
  • Structural health monitoring (SHM) of civil infrastructure using fiber Bragg grating sensor networks (FBGSNs) has received significant public attention in recent years. However, there is currently little research on the health-monitoring technology of high-piled wharfs in coastal ports using the fiber Bragg grating (FBG) sensor technique. The benefits of FBG sensors are their small size, light weight, lack of conductivity, resistance corrosion, multiplexing ability and immunity to electromagnetic interference. Based on the properties of high-piled wharfs in coastal ports and servicing seawater environment and the benefits of FBG sensors, the SHM system for a high-piled wharf in the Tianjin Port of China is devised and deployed partly using the FBG sensor technique. In addition, the health-monitoring parameters are proposed. The system can monitor the structural mechanical properties and durability, which provides a state-of-the-art mean to monitor the health conditions of the wharf and display the monitored data with the BIM technique. In total, 289 FBG stain sensors, 87 FBG temperature sensors, 20 FBG obliquity sensors, 16 FBG pressure sensors, 8 FBG acceleration sensors and 4 anode ladders are installed in the components of the back platform and front platform. After the installation of some components in the wharf construction site, the good signal that each sensor measures demonstrates the suitability of the sensor setup methods, and it is proper for the full-scale, continuous, autonomous SHM deployment for the high-piled wharf in the costal port. The South 27# Wharf SHM system constitutes the largest deployment of FBG sensors for wharf structures in costal ports to date. This deployment demonstrates the strong potential of FBGSNs to monitor the health of large-scale coastal wharf structures. This study can provide a reference to the long-term health-monitoring system deployment for high-piled wharf structures in coastal ports.

Experimental Study on Dry Waterproofing Technology Using Synthetic Polymer Sheet Comprised of Synthetic Resin Metal Sheets and Tri-Layered Filler (합성수지 메탈시트와 3면겹침용 채움재가 공법화된 합성고분자계 시트를 이용한 건식화 방수기술에 대한 실험적 연구)

  • Koo, Ja-Ung;Kim, Bum-Soo;Lee, Jung-Hun;Song, Je-Young;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.139-140
    • /
    • 2017
  • This technology employs a method of forming a single-ply PLUS waterproofing sheet layer comprised of applying a single-ply synthetic polymer layer on a vibrating structure (steel frame, RC) or an inclined surface by using a T joint lap-filling coil and an embedded metal coated sheet. The T - joint reinforcing lap-filling coil was used to block the ingress channel of the rainwater by applying the material in the vulnerable area where the three sides of the waterproof sheet overlapped. Conventional waterproofing techniques have a problem in that the waterproof sheet is pierced because the end portion of the waterproof sheet applied to the vertical portion is fixed by a nail, and the sealant applied to the end portion of the sheet cannot easily secure long-term waterproof durability due to the influence of the external environment. Therefore, the developed technology secured the waterproof durability against the vertical part by using the embedded metal sheet. In addition, automatic hot-air fusing is used to improve the quality of waterproof construction and point fixation method using fixed hardware. This is a technology that is not significantly restricted in the high degradation level regions of domestic waterproof construction environments in Korea such as low-temperature environment, wet floor.

  • PDF

Durability Design of Composite Piston in Marine Diesel Engines (박용 디젤엔진용 분리형 피스톤의 내구설계)

  • Son, Jung-Ho;Ha, Man-Yeong;Ahn, Sung-Chan;Choi, Seong-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.651-657
    • /
    • 2010
  • A composite piston with a crown made of steel and a skirt made of NCI is used in a marine diesel engine, which has a maximum firing pressure of over 180 bar and a high thermal load. In the fatigue design of the composite piston, the fatigue is influenced by factors such as the load type, surface roughness, and temperature; further, the distribution ratio of the firing force from the crown to the skirt is important for optimizing the design of the crown and skirt. In this study, the stress gradient method was used to consider the effect of the load type. The temperature field on the piston was predicted by cocktail-shaking cooling analysis, and influence of high temperature on fatigue strength was investigated. The load transfer ratio and contact pressure were optimized by design of the surface shape and accurate tolerance analysis. Finally, the cooling performance and durability design of the composite piston were verified by performing a long-term prototype test.

A Dynamic Behavior Analysis of composite Few Plate Girder Railway Bridge under Variety of Track systems (소수주형 철도교의 궤도시스템 변화에 따른 동적거동 분석)

  • Lee Hong-Joon;Choi Jung-Youl;Eom Mac;Park Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1171-1176
    • /
    • 2005
  • The latest technical development of steel plate girder railway bridge are developing in ways to maximize its durability of materials in use of high strength steel and efficiency of maintenance and management by the introduction of simplified and standardization ideas. In addition to this, it is also expected to reduce the cost of bridge construction and to simplify the process of bridge manufacturing. Referring to this, composite few plate girder railway bridge is highly recommendable that is very economical with the fine exterior. In this paper, it will analyse the variation of dynamic behavior of existing composite few plate girder railway bridge with ballast caused by modified Slab Track through interpretation of limited enzyme in order to obtain the existing data for improvement of Slab Track system from Ballast Track system. Consequently, it can help maximize economic efficiency and structural capability. As a results, although the natural frequency by modified Slab Track are decreased, it is hardly influencing on the safety of railway bridges. It is also evident in the case of slab deck with a reduced scale in comparison with Ballast Track. Therefore, it is expected to reduce the cost of a railway bridge plan. And, it can expect the synergistic effect of the ensure long term durability of bridge caused by decreased stresses of bottom flange due to reduced dead load. As a result, the analytical study are carried out to investigate the composite few plate girder railway bridge could be the optimal design method for the dynamic safety of a girder section.

  • PDF

Development of the High-quality Coating System for the Steam Pipe of Ship (선박 스팀파이프용의 고내구성 도장 사양 개발 연구)

  • Lee, Sung-Kyun;Baek, Kwang-Ki;Hwang, Dong-Un;Song, Eun-Ha
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.46-52
    • /
    • 2006
  • For ships, heat resistant coating is applied on the aluminized steel pipe systems dealing with high temperature steam over $200^{\circ}C$. The coatings on these steam pipes should retain both heat resistance and anti-corrosion properties to provide long-term resistance against coating defects (rust, delamination and crack) under the harsh outdoor environment including repeated seawater wetting and condensation. Thus, it is important to improve the coating qualities and to reduce maintenance works for these steam pipe systems. In this study, five different commercial heat resistant coatings (A, B, C, D, E) were selected for evaluation. Various physical properties of these coatings were evaluated on the coatings applied on the aluminized steam pipes. FT-IR analysis was also employed to identify the factors contributing the degree of heat resistance and durability of each coating material. The results indicated that the heat resistance capacity of coatings increased with the increase of silicon content as well as the decrease of substituent content. Both products C and D showed the best coating qualifies, which can be standard coating systems for future steam pipe areas.

  • PDF

Fundamental Properties on the Development of High Performance Shrinkage Reducing Agent for Concrete (콘크리트용 고성능 수축저감제 개발에 대한 기초적 특성)

  • Park, Jong-Pil;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4298-4307
    • /
    • 2015
  • The expenses of maintenance and reinforcement for aged concrete structures are significantly on the increase as their durability and general performance has been naturally degraded. Due to this reason, interests on concrete crack reduction technology are growing but more researches are required to fulfill such fast growing demands. Particularly in the underground power facilities, it is difficult to maintain the quality of aging concrete spheres for underground power as their deterioration caused by long-term operation is on-going. In recent years, many studies have been made to overcome the issues and now it is determined that the shrinkage reducing technology which can dramatically reduce the crack at the design stage is one of the most effective solutions. In this study, the test investigated fundamental propertiesof concrete using various shrinkage reducing materials to develop low shrinkage mortar. According to results of experimental study, for mortar and concrete, glycol based material showed excellent shrinkage property and compressive strength. For the later study to generic application of the shrinkage reducing materials, performance reviews on the shrinkage reducing materials with variable factors and various materials such as changes in the amount and type of materials should be followed.

A Study on Strength and Chloride Resistance of Concrete Using the Metakaolin (메타카올린 사용에 따른 콘크리트의 강도 및 염화물 저항성)

  • Kim, Myung-Yu;Yang, Eun-Ik;Yang, Joo-Kyoung;Park, Hae-Guun;Chun, Sang-Eun;Lee, Myeong-Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.521-524
    • /
    • 2008
  • The requirement for durability of concrete is increasing recently as a high-rise concrete structure is built. For this reason, the concern about high performance concrete is being high. Recently, metakaoline to be profitable in economical aspect as well as to have strength and durability of level similar to silica fume is evaluated highly as new admixture. In this study, the workability, the strength, the chloride resistance and the air-void structure more than 50${\mu}m$ are evaluated by comparing both metakaolin and silica fume. According to the results, when the metakaoline is compared with silica fume in properties of fresh concrete, it seems to the similar level of properties. Metakaoline concrete showed the highest value in the strength property. And, it is showed that replacement of the metakaoline more than 10% is superior than both silica fume and OPC in long and short-term chloride resistance. In conclusion, replacement of the metakaoline more than 10% is the most excellent performance in terms of strength and chloride resistance

  • PDF

Influence of Operation Conditions on the Performance of PEM Water Electrolysis (운전조건이 PEM 수전해 셀의 성능에 미치는 영향)

  • Sangyup Jang;Jaedong Kim;Jinmo Park;Youngseuk So
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2024
  • Green Hydrogen demonstration complex is under conduction in Jeju island which is rich in renewable energy resources and will produces green hydrogen using a water electrolysis systems. In order to check durability of long-term operation, AST(accelerated stress test) was applied and the power pattern based on Jeju Island's wind power was applied. After 800 hours of repeated application of low current and high current, the performance of the PEM water electrolysis cell was reduced by up to 10% and by about 5.5% in operating conditions. As the result of impedance analysis, it can be seen that the electrode polarization resistance greatly increased than ohmic polarization resistance. In addition, when the durability evaluation was conducted by applying the wind power pattern of Jeju Island, the performance of the PEM water electrolysis cell showed up to 1.6% and a decrease of less than 1% in operating conditions. As a result of the impedance, it can be seen that the change of ohmic resistance and electrode polarization resistance is small.