• Title/Summary/Keyword: The improved soil

Search Result 1,112, Processing Time 0.026 seconds

Evaluation of Sustainable Plastic Management Strategy of Korean Consumer Goods Companies (국내 소비재 기업의 지속 가능한 플라스틱 경영 전략 평가를 위한 지표 개발)

  • Suho Han;Seongku Kwon;Junhee Park;Jeongki Lee;Jay Hyuk Rhee;Yongjun Sung;Sung Yeon Hwang;Yong Sik Ok
    • Journal of Environmental Science International
    • /
    • v.32 no.11
    • /
    • pp.745-756
    • /
    • 2023
  • Growing stringent global regulations in Korea poses a threat to corporate sustainability. Companies must respond strategically to navigate these regulations and avoid greenwashing. Objective of this research was to analyze how Korean companies are responding to the global trend of reducing plastic use and propose improved management strategies. Seven indicators were developed to assess companies' post-plastic strategies and applied to analyze the sustainability reports of Amore Pacific and LG Household & HealthCare. These indicators included, 1) disclosure of plastic raw materials used by weight or volume, 2) disclosure of recycled plastic raw materials used by weight or volume, 3) disclosure of waste recycling, reuse amounts, and disposal using waste treatment method 4) strategies to reduce environmental impact of plastics, 5) plastic packaging, reduce, recycle, reuse, and composting (in the real environment), 6) plastic management roadmap for the circular economy, and 7) education for sustainable plastic management. Based on the review of considered companies, we propose in-listed sustainable plastics management strategies: disclosing the ratio of plastic raw materials and recycled raw materials for all products, considering recycling rate throughout the product value chain, and not only for the production phase, reviewing carbon dioxide emissions based on life cycle assessment rather than reducing plastic consumption, studying the biodegradability of biodegradable plastics in natural environment such as soil, considering the consumer's perspective.

Prediction of Settlement of SCP Composite Ground using Genetic Algorithm (유전자 알고리즘 기법에 근거한 SCP 복합지반의 침하 예측)

  • 박현일;김윤태;이형주
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.64-74
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay wall, sand compaction pile method (SCP) has widely been applied. Improved ground is composite ground which is consisted of the sand pile-surrounding clayey soil. As caisson and upper structures are installed on SCP composite ground, the settlement is compositively occurred by elastic compression of sand compaction piles and also consolidation of the surrounding clay ground. In this study, the combined settlement model is proposed to predict the settlement of SCP composite ground in basis of elastic theory for sand compaction pile and consolidation theory for marine soft clay. Optimization technique was performed based on back-analysis so that real coded genetic algorithm was applied to estimate the parameters of the proposed settlement model. Case analysis was carried out for a domestic SCP composite ground to examine the applicability of the proposed prediction technique.

Improvement Effects of Soft Ground by Granular Pile (Granular Pile에 의한 연약지반의 개량효과)

  • 천병식;김백영
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.43-54
    • /
    • 2002
  • As construction cases of structure are increasing in the soft ground, the necessity of ground improvement is also increasing. Granular pile is one of the improvement methods for soft ground and for loose sandy soil. In domestic, SCP(Sand Compaction Pile) method using sand material has been mainly used to improve soft ground, but Granular pile with crushed-stone was not used much. However, alternative material such as crushed-stone is needed to substitute for sand due to the environmental and economical problems. In this study, staged load test and consolidation test were performed in the laboratory to observe the behavior of soft ground improved by Granular pile. In order to evaluate the characteristics such as bearing capacity, drainage, md settlement, sand and crushed-stone were applied as each pile material. The test results show that crushed-stone has higher bearing capacity and less settlement than those of sand under similar fore water pressure condition. Therefore, crushed-stone is determined to be appropriate as the substitute for sand.

236U accelerator mass spectrometry with a time-of-flight and energy detection system

  • Li Zheng;Hiroyuki Matsuzaki;Takeyasu Yamagata
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4636-4643
    • /
    • 2022
  • A time-of-flight and energy (TOF-E) detection system for the measurement of 236U accelerator mass spectrometry (AMS) has been developed to improve the 236U/238U sensitivity at Micro Analysis Laboratory, Tandem accelerator (MALT), The University of Tokyo. With observing TOF distribution of 235U, 236U and 238U, this TOF-E detection system has clearly separated 236U from the interference of 235U and 238U when measuring three kinds of uranium standards. In addition, we have developed a novel method combining kernel-based density estimation method and multi-Gaussian fitting method to estimate the 236U/238U sensitivity of the TOF-E detection system. Using this new estimation method, 3.4 × 10-12 of 236U/238U sensitivity and 1.9 ns of time resolution are obtained. 236U/238U sensitivity of TOF-E detection system has improved two orders of magnitude better than that of previous gas ionization chamber. Moreover, unknown species other than uranium isotopes were also observed in the measurement of a surface soil sample, which has demonstrated that TOF-E detection system has a higher sensitivity in particle identification. With its high sensibility in mass determination, this TOF-E detection system could also be used in other heavy isotope AMS.

Development of underground facility information collection technology based on 3D precision exploration (3차원 정밀탐사 지하시설물 정보 수집 기술 개발)

  • Jisong RYU;Yonggu JANG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.56-66
    • /
    • 2023
  • Safety accidents are increasing, such as changes in groundwater levels due to construction work or natural influences, or ground cave-ins caused by soil runoff from old water supply and sewage pipes. In addition, underground facility management agencies must make efforts to improve the accuracy of underground information through continuous investigation and exploration in accordance with the Special Act on Enhanced Underground Safety Management. Accordingly, in this study, we defined the configuration of equipment and data processing method to collect 3D precise exploration underground facility information and developed 3D underground facility information collection technology to ensure accuracy of underground facilities. As a result of verifying the developed technology, the horizontal accuracy improved by an average of 6cm compared to the existing method, making it possible to acquire 3D underground facility information within the error range of the public survey work regulations.

Improvement of K+ and Na+ Ion homeostasis and salt tolerance by Co-inoculation of arbuscular mycorrhizal fungi (AMF) and spore associated bacteria (SAB)

  • Selvakumar, Gopal;Kim, Kiyoon;Roy, C. Aritra;Jeon, Sunyong;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.246-246
    • /
    • 2017
  • Salinity inhibits plant growth and restricts the efficiency of arbuscular mycorrhizal fungi. The selective uptake of nutrients from the soil and their effective transport to host roots make it essential for plant growth and development under salt stress. AMF spore associated bacteria shown to improve mycorrhizal efficiency under stress. Thus, this study aimed to understand the co-inoculation efficiency of AMF and SAB on maize growth and ion homeostasis under salt stress. Two AMF strains and one SAB were inoculated with maize either alone or in combination with one another. The results of our study showed that AMF and SAB co-inoculation significantly improved dry weight and nutrient uptake of maize under salt stress. Co-inoculation significantly reduced proline accumulation in shoots and Na+ accumulation in roots. Co-inoculation treatment also exhibited the high K+/Na+ ratios in roots at 25 mM NaCl. Mycorrhizal colonization showed positive influence for regulation of ZmAKT2, ZmSOS1 and ZmSKOR gene expressions, contributing to K+ and Na+ ion homeostasis. CLSM view showed that SAB were able move and localize into inter and intra cellular spaces of maize roots. In addition, CLSM view of AMF spores showed that gfp-tagged SAB also associated on the spore outer hyaline layer.

  • PDF

Fertilization of N and Si to Sustain Grain Yield and Growth Characteristics of Rice after Winter Greenhouse Water-melon Cropping

  • Cho, Young-Son;Jeon, Weon-Tae;Park, Chang-Young;Park, Ki-Do;Kang, Ui-Gum;Muthukumarasamy, Ramachandran
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.505-512
    • /
    • 2006
  • In Korea, silicate fertilization (SF) is being practiced every four years to enhance rice production. However, the relationship between nitrogen (N) and SF in view of growth characteristics and grain yield of rice has not been examined after watermelon cropping in plastic film house. This study was carried out to identify useful critical N and Si fertilizer levels to sustain grain yield and to improve N use efficiency for rice. The watermelon-rice cropping system has maintained for three seasons in each year from 1998 to 2001 by farmer before this experiment. Experiments on N and Si fertilization levels were evaluated with Hwayoungbyeo (Oryza sativa L.) in 2002 and 2003 at Uiryeong, Korea. The goal of this experiment was to find out the optimum N and Si levels to sustain rice yield by reducing excessive N fertilizer in watermelon-rice cropping system. Nitrogen fertilization (NF) levels were three ($0,\;57,\;114kg\;ha^{-1};0,\;50,\;100%$ of conventional NF amount) and five (0, 25, 50, 75, 100%) in 2002 and 2003, respectively, and combined with three SF levels ($70,\;130,\;180mg\;kg^{-1};100,\;150,\;200%$ which were adjusted with Si fertilizer in soil) were evaluated for the improvement of N and Si fertilization level in both years. Rice yielded 3.98-5.95 and 2.84-4.02 t/ha in 2002 and 2003, respectively. Our results showed the combinations of 50% and 100% of N with 200% level of Si produced the highest grain yield in both years, respectably. The grain yield was greatly improved in plot of N25% level when compared to conventional NF (Nl00%) in 2003. In conclusion, NF amount could be reduced about 50% compared to recommended level by specific fertilization of N and Si combination levels for rice growing and grain yield after cultivation watermelon in paddy field.

Growth Promotion of Lettuce by Biofertilizer, BIOACTIVE, Prepared from Bacillus subtilus HR-1019 and N-acetyl-thioproline (Bacillus subtilus HR-1019와 N-Acetyl-thioproline으로 제조한 미생물처리제, BIOACTIVE에 의한 상추의 생장 촉진)

  • Lee, Yong-Suk;Park, Dong-Ju;Kim, Jae Hoon;Kim, Hyeong Seok;Chung, Soo Yeol;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.79-83
    • /
    • 2013
  • A biofertilizer, BIOACTIVE, was manufactured by N-acetyl-thioproline (ATCA) and mineral phosphate solubilizing bacteria. The growth promoting effect of the biofertilizer on lettuce was evaluated under three different pot conditions, and its stability was assessed in the field. According to the results of the pot experiments, plant growth was improved compared with that of control: 128%, 122%, and 153% for the leaf number, leaf length, and leaf mass, respectively. Applying the manufactured biofertilizer increased the concentration of phosphate: 118% and 132% in the cultivation soil and plant cells, respectively. These show that BIOACTIVE may have potential as an effective biofertilizer in agriculture.

A Study on the Utilization of Waste Tire/Waste Moter Oil Pyrolytic Residue for Asphalt (폐타이어/폐윤활유 열분해 잔류물의 아스팔트 활용기술)

  • 김상국;손성근;김동찬
    • Resources Recycling
    • /
    • v.4 no.4
    • /
    • pp.16-21
    • /
    • 1995
  • When waste t~re/~vastmz otor oil is pyrolyzed. most of them hecome gaseous produds. and thc remaining onc, whascwelght is ahout in% oi the waste Ore, is pyrolyced residue mnstly composcd oi ca~bnn black A rescsrcll was canicrl nut loutilize lhe pyralyred residue of waste tnelwuste lnotol 011 us retnin~cing agent of asphall concrete, bescd on iolelg~r lesearchrepurl. This shows thal the properlies ol asphall concrele ~nclud~cd~ugl ah~l~tyre, sistance to Tear. temperature-v~scusilysusceptil,ilily u e g reatly improved when lhe pellellrcd hrln aI carlmn hlack usmg petroleum o ~als a hinder Iar ihe pellels isused with asphalt. The surface of the pyralyred resirh~ei s covned by ocl film and thla lnakes good comllatibllity with asphallIn order lo ulilk pyrolyzed residue as a reinforcing agenl oi lhe itsphalt concrete, various tests such as Marshnll tcsi, wheeltracking, and revelhng test has been carried out a1 KLER, Ko~ea I-lighway Coo~poration, and TCMO. Tcst lcsults satirry KSslandard, show "npmvements an the dynam~cs tab~l~lzym, d incrcase reslslance to wear at cold telnpelatule Invrsligadon wascarlied oul to sludg the possibility of soil pallul~on when pyrolyzed residue is used as a tzmioicing agenl. E~pcrimentalresulls show the rcsidue contained in thc asphall docs not cause cnv~ranma~lparlo blems.e cnv~ranma~lparlo blems.

  • PDF

High frequency plant regeneration from zygotic-embryo-derived embryogenic cell suspension cultures of watershield (Brasenia schreberi)

  • Oh, Myung Jin;Na, Hye Ryun;Choi, Hong-Keun;Liu, Jang Ryol;Kim, Suk Weon
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.87-92
    • /
    • 2008
  • An improved protocol for high frequency plant regeneration via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of watershield (Brasenia schreberi) was developed. Zygotic embryos formed pale-yellow globular structures and white friable callus at a frequency of 80% when cultured on halfstrength MS medium supplemented with $0.3mg\;l^{-1}$ 2,4-D. However, the frequency of formation of pale-yellow globular structures and white friable callus decreased slightly with increasing concentrations of 2,4-D up to $3mg\;l^{-1}$, where the frequency reached ~50% of the control. Cell suspension cultures from zygotic embryoderived white friable callus were established using half-strength MS medium supplemented with $0.3mg\;l^{-1}$ 2,4-D. Upon plating of cell aggregates on half-strength MS basal medium, approximately 8.3% gave rise to somatic embryos and developed into plantlets. However, the frequency of plantlet development from cell aggregates was sharply increased (by up to 55%) when activated charcoal and zeatin were applied. Regenerated plantlets were successfully transplanted to potting soil and grown to normal plants in a growth chamber. The distinctive feature of this study is the establishment of a high frequency plant regeneration system via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of water-shield, which has not been previously reported. The protocol for plant regeneration of watershield through somatic embryogenesis could be useful for the mass propagation and transformation of selected elite lines.